Academic literature on the topic 'Reinforcing bars Fatigue'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reinforcing bars Fatigue.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Reinforcing bars Fatigue"

1

Kopas, Peter, Lenka Jakubovičová, Milan Vaško, and Marián Handrik. "Fatigue Resistance of Reinforcing Steel Bars." Procedia Engineering 136 (2016): 193–97. http://dx.doi.org/10.1016/j.proeng.2016.01.196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Wei, Jie Chen, Bo Diao, Xuefei Guan, Jingjing He, and Min Huang. "Bayesian Fatigue Life Prediction of Corroded Steel Reinforcing Bars." Advances in Civil Engineering 2021 (December 28, 2021): 1–15. http://dx.doi.org/10.1155/2021/4632152.

Full text
Abstract:
This paper presents a general method for fatigue life prediction of corroded steel reinforcing bars. A fatigue testing on standard specimens with pitting corrosion is carried out to obtain corrosion fatigue data. The maximum corrosion degree (MCD), characterizing the most severe site of the corrosion pit, is identified to have a log-linear relationship with the fatigue life. A fatigue life model incorporating the MCD and the stress range for corroded steel reinforcing bars is proposed. The model parameters are identified using the testing data, and the model is considered as the baseline model
APA, Harvard, Vancouver, ISO, and other styles
3

Hyland, C. W. K., and A. Ouwejan. "Fatigue of reinforcing bars during hydro-demolition." Journal of Physics: Conference Series 843 (May 2017): 012033. http://dx.doi.org/10.1088/1742-6596/843/1/012033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Shibin, Hongwei Tang, Qiang Gui, and Zhongguo John Ma. "Fatigue behavior of naturally corroded plain reinforcing bars." Construction and Building Materials 152 (October 2017): 933–42. http://dx.doi.org/10.1016/j.conbuildmat.2017.06.173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwarzkopf, Michael. "Fatigue Design of Tack-Welded Mesh Reinforcing Bars." Structural Engineering International 5, no. 2 (May 1995): 102–6. http://dx.doi.org/10.2749/101686695780601240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Real, Enrique, Cristina Rodríguez, A. Fernández Canteli, and F. Javier Belzunce. "Influence of the Shot Peening Process on the Fatigue Behaviour of Duplex Stainless Steel Reinforcing Bars." Materials Science Forum 539-543 (March 2007): 4981–86. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.4981.

Full text
Abstract:
The influence of shot peening on the fatigue properties of duplex stainless steel reinforcing bars manufactured using both hot and cold rolled processes was studied. From determination of the S-N curves, the experimental results show that shot peening improves the fatigue behaviour of the re-bars, but that the improvement is much greater for the hot rolled bars. A more severe peening action capable of promoting greater plastic deformation of the bar surface needs to be used to improve the fatigue resistance of cold rolled corrugated bars.
APA, Harvard, Vancouver, ISO, and other styles
7

Koulouris, Konstantinos F., and Charis Apostolopoulos. "Fatigue damage indicator of different types of reinforcing bars." International Journal of Structural Integrity 13, no. 4 (March 28, 2022): 632–48. http://dx.doi.org/10.1108/ijsi-10-2019-0103.

Full text
Abstract:
PurposeAs it is widely known, corrosion constitutes a major deterioration factor for reinforced concrete (RC) structures which are located on coastal areas. This phenomenon combined with repeated loads, as earthquake events, negatively affects their service life. Moreover, microstructure of steel reinforcing bars has significant impact either on their corrosion resistance or on their fatigue life.Design/methodology/approachIn the present manuscript an effort has been made to investigate the effect of corrosive factor on fatigue response for two types of steel reinforcement; Tempcore steel rein
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Shibin. "Fatigue of Reinforcing Steel Bars Subjected to Natural Corrosion." Open Civil Engineering Journal 5, no. 1 (April 29, 2011): 69–74. http://dx.doi.org/10.2174/1874149501105010069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhuang, Chenxu, Jinquan Zhang, and Ruinian Jiang. "Fatigue Flexural Performance of Short-Span Reinforced Concrete T-Beams Considering Overloading Effect." Baltic Journal of Road and Bridge Engineering 15, no. 2 (June 25, 2020): 89–110. http://dx.doi.org/10.7250/bjrbe.2020-15.474.

Full text
Abstract:
Traffic volume increase and higher proportion of heavier trucks have raised the potential risk of fatigue failure of short-span reinforced concrete beams. To investigate the fatigue behavior of short-span reinforced concrete beams with and without the overload effect, nine 5 m reinforced concrete T-beams were cast and tested. Two beams were tested under static loading to determine the ultimate strength; the remaining seven beams were subjected to cyclic loading with constant-amplitude load ranges. In addition, two of the seven beams were subjected to instant overloading. It was observed that t
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, M. A. "Essential Mechanical Properties of Structural Steels for Steel Reinforced Buildings in the Earthquake Sensitive Areas." Journal of Scientific Research 4, no. 1 (December 23, 2011): 51. http://dx.doi.org/10.3329/jsr.v4i1.7069.

Full text
Abstract:
During earthquake, the ground along with its various natural and manmade structures experiences shaking of various intensities and frequencies depending on the nature of the earthquake. The loading activities caused by earthquakes on various structures are very much cyclic type, which is popularly known as fatigue loading. On the other hand, for modern high-rise buildings a large volume of steel bar is used to reinforce the concrete because of the pioneer role of steel bars embedded inside the concrete for safety of the buildings. In this study various mechanical properties of reinforcing stee
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Reinforcing bars Fatigue"

1

Zheng, Hang. "Tempcore reinforcing steel : microstructure and mechanical properties." Phd thesis, Department of Civil Engineering, 1998. http://hdl.handle.net/2123/8671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gravina, Rebecca Jane. "Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg777.pdf.

Full text
Abstract:
Includes corrigenda (inserted at front) and list of publications published as a result of this research. Includes bibliographical references (leaves 192-199) Investigates the overload behaviour and modes of collapse of reinforced concrete flexural members containing 500MPa grade reinforcing steel and evaluates the adequacy of current ductility requirements for design according to AS 3600 to ensure strength and safety.
APA, Harvard, Vancouver, ISO, and other styles
3

Gravina, Rebecca Jane. "Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement / by Rebecca Jane Gravina." Thesis, 2002. http://hdl.handle.net/2440/21791.

Full text
Abstract:
Includes corrigenda (inserted after title page) and list of publications published as a result of this research.<br>Includes bibliographical references (leaves 192-199)<br>xxvii, 223 leaves : ill. ; 30 cm.<br>Investigates the overload behaviour and modes of collapse of reinforced concrete flexural members containing 500MPa grade reinforcing steel and evaluates the adequacy of current ductility requirements for design according to AS 3600 to ensure strength and safety.<br>Thesis (Ph.D.)--University of Adelaide, Dept. of Civil and Environmental Engineering, 2002
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Reinforcing bars Fatigue"

1

Abatta-Jácome, Lenin, Carlos Naranjo-Guatemala, Daniel Naranjo-Torres, and Edison E. Haro. "Experimental Study of Low Cycle Fatigue in Welded Reinforcing Steel Bars ASTM A706." In Communications in Computer and Information Science, 3–15. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24971-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Real, Enrique, Cristina Rodríguez, A. F. Canteli, and F. J. Belzunce. "Influence of the Shot Peening Process on the Fatigue Behaviour of Duplex Stainless Steel Reinforcing Bars." In THERMEC 2006, 4981–86. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Low cycle fatigue properties of anti-seismic steel HRB400E reinforcing steel bars." In Green Building, Materials and Civil Engineering, 337–40. CRC Press, 2014. http://dx.doi.org/10.1201/b17568-67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ishikawa, Y., M. Aoyama, Y. Adachi, and M. Nagai. "Damage assessment of reinforced concrete decks due to chloride-induced corrosion of reinforcing bars and fatigue." In Bridge Maintenance, Safety, Management, Resilience and Sustainability, 1659–66. CRC Press, 2012. http://dx.doi.org/10.1201/b12352-241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

M. Kashani, Mohammad, Adam J. Crewe, and Nicholas A. Alexander. "Damage propagation in corroded reinforcing bars with the effect of inelastic buckling under low-cycle fatigue loading." In Life-Cycle of Engineering Systems, 1996–2002. CRC Press, 2016. http://dx.doi.org/10.1201/9781315375175-262.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Reinforcing bars Fatigue"

1

Braconi, A., F. Braga, S. Caprili, R. Gigliotti, and W. Salvatore. "INFLUENCE OF LOW-CYCLE FATIGUE AND CORROSION PHENOMENA ON THE DUCTILE BEHAVIOUR OF STEEL REINFORCING BARS." In 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/120113.4787.c1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lunabba, Torsten, Milla Ranta, Kimmo Julku, Heikki Lilja, and Timo Tirkkonen. "Evaluating the Residual Lifetime of Road Bridges Through Simulation." In IABSE Conference, Copenhagen 2018: Engineering the Past, to Meet the Needs of the Future. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/copenhagen.2018.008.

Full text
Abstract:
&lt;p&gt;In 2015-2016 Destia Ltd conducted a study to examine the stress variations caused by actual traffic on two-lane road bridges. Actual traffic was studied using a purposely developed simulation software. Destia Ltd collected data of the traffic flow from automatic monitoring stations. An article based on the research was presented at the 19th IABSE Congress Stockholm, 21-23 September 2016 [1].&lt;p&gt; This study expands the previous analysis to include the determination of equivalent stresses that are used to estimate the fatigue damage of structural steel and reinforcing steel bars ca
APA, Harvard, Vancouver, ISO, and other styles
3

Jansto, Steven G. "New Generation Structural Steel Plate Metallurgy for Meeting Offshore and Arctic Application Challenges." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77723.

Full text
Abstract:
The new generation of value-added low carbon-low manganese-niobium microalloyed structural steels for both low and high yield strength, energy absorption, fatigue and fracture resistant applications is under development for offshore and arctic materials engineering applications. These materials engineering considerations are shifting designers to consider new lower cost and more robust construction materials even for low yield strength applications require improved fatigue, fracture arrest and toughness performance. The civil engineering and end user community demand structural reinforcing bar
APA, Harvard, Vancouver, ISO, and other styles
4

Yoneda, Taiju, Jie Fang, Hideyuki Otani, Satoshi Tsuchiya, Satoru Oishi, and Tetsuya Ishida. "Development of a 3D Finite-Element Modelling Generation System Based on Data Processing Platform and Fatigue Analysis of Full-Scale Reinforced-Concrete Bridge." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0415.

Full text
Abstract:
&lt;p&gt;This study presents a technology development for creating 3D finite-element full-scale bridge models based on a data processing platform (DPP) and explores the trial fatigue analysis to serve as an important reference for future practical applications. Until now, the model generation, validation and calculation for a large-scale model of conventional method consume huge time and money. Currently, developments in High- Performance Computing (HPC) and preparation for large parallel computers make numerical simulation operation more efficient. Moreover, through the grouping structure tec
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Jie, and Yongming Liu. "Bayesian Information Fusion of Multmodality Nondestructive Measurements for Probabilistic Mechanical Property Estimation." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23411.

Full text
Abstract:
Abstract Missing data occur when no data value is available for the variable in an observation. In this research, Bayesian data augmentation method is adopted and implemented for prediction with missing data. The data augmentation process is conducted through Bayesian inference with missing data assuming the multivariate normal distribution. Gibbs sampling is used to draw posterior simulations of the joint distribution of unknown parameters and unobserved quantities. The missing elements of the data are sampled conditional on the observed elements. The distribution of model parameters and vari
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!