Journal articles on the topic 'Relative free energy calculations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Relative free energy calculations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Song, Lin Frank, Tai-Sung Lee, Chun Zhu, Darrin M. York, and Kenneth M. Merz. "Using AMBER18 for Relative Free Energy Calculations." Journal of Chemical Information and Modeling 59, no. 7 (2019): 3128–35. http://dx.doi.org/10.1021/acs.jcim.9b00105.
Full textLiu, Shuai, Lingle Wang, and David L. Mobley. "Is Ring Breaking Feasible in Relative Binding Free Energy Calculations?" Journal of Chemical Information and Modeling 55, no. 4 (2015): 727–35. http://dx.doi.org/10.1021/acs.jcim.5b00057.
Full textCappel, Daniel, Michelle Lynn Hall, Eelke B. Lenselink, et al. "Relative Binding Free Energy Calculations Applied to Protein Homology Models." Journal of Chemical Information and Modeling 56, no. 12 (2016): 2388–400. http://dx.doi.org/10.1021/acs.jcim.6b00362.
Full textKim, Seonghoon, and Wonpil Im. "Charmm-Gui Ligand Binder for Relative Binding Free Energy Calculations." Biophysical Journal 116, no. 3 (2019): 291a. http://dx.doi.org/10.1016/j.bpj.2018.11.1572.
Full textKaus, Joseph W., and J. Andrew McCammon. "Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations." Journal of Physical Chemistry B 119, no. 20 (2015): 6190–97. http://dx.doi.org/10.1021/acs.jpcb.5b02348.
Full textGe, Yunhui, David F. Hahn, and David L. Mobley. "A Benchmark of Electrostatic Method Performance in Relative Binding Free Energy Calculations." Journal of Chemical Information and Modeling 61, no. 3 (2021): 1048–52. http://dx.doi.org/10.1021/acs.jcim.0c01424.
Full textDickson, Callum J., Viktor Hornak, and Jose S. Duca. "Relative Binding Free-Energy Calculations at Lipid-Exposed Sites: Deciphering Hot Spots." Journal of Chemical Information and Modeling 61, no. 12 (2021): 5923–30. http://dx.doi.org/10.1021/acs.jcim.1c01147.
Full textNanda, Hirsh, Nandou Lu, and Thomas B. Woolf. "Using non-Gaussian density functional fits to improve relative free energy calculations." Journal of Chemical Physics 122, no. 13 (2005): 134110. http://dx.doi.org/10.1063/1.1877252.
Full textKlimovich, Pavel V., and David L. Mobley. "A Python tool to set up relative free energy calculations in GROMACS." Journal of Computer-Aided Molecular Design 29, no. 11 (2015): 1007–14. http://dx.doi.org/10.1007/s10822-015-9873-0.
Full textSaito, Minoru, and Akinori Sarai. "Free energy calculations for the relative binding affinity between DNA and ?-repressor." Proteins: Structure, Function, and Genetics 52, no. 2 (2003): 129–36. http://dx.doi.org/10.1002/prot.10333.
Full textVilseck, Jonah Z., Julian Tirado-Rives, and William L. Jorgensen. "Determination of partial molar volumes from free energy perturbation theory." Physical Chemistry Chemical Physics 17, no. 13 (2015): 8407–15. http://dx.doi.org/10.1039/c4cp05304d.
Full textMark, Alan E., Wilfred F. van Gunsteren, and Herman J. C. Berendsen. "Calculation of relative free energy via indirect pathways." Journal of Chemical Physics 94, no. 5 (1991): 3808–16. http://dx.doi.org/10.1063/1.459753.
Full textCournia, Zoe, Bryce Allen, and Woody Sherman. "Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations." Journal of Chemical Information and Modeling 57, no. 12 (2017): 2911–37. http://dx.doi.org/10.1021/acs.jcim.7b00564.
Full textRocklin, Gabriel J., David L. Mobley, and Ken A. Dill. "Separated topologies—A method for relative binding free energy calculations using orientational restraints." Journal of Chemical Physics 138, no. 8 (2013): 085104. http://dx.doi.org/10.1063/1.4792251.
Full textWang, Cun Xin, Hai Yan Liu, Yun Yu Shi, and Fu Hua Huang. "Calculations of relative free energy surfaces in configuration space using an integration method." Chemical Physics Letters 179, no. 5-6 (1991): 475–78. http://dx.doi.org/10.1016/0009-2614(91)87089-t.
Full textWoolf, Thomas B. "Path corrected functionals of stochastic trajectories: towards relative free energy and reaction coordinate calculations." Chemical Physics Letters 289, no. 5-6 (1998): 433–41. http://dx.doi.org/10.1016/s0009-2614(98)00427-8.
Full textRaman, E. Prabhu, Thomas J. Paul, Ryan L. Hayes, and Charles L. Brooks. "Automated, Accurate, and Scalable Relative Protein–Ligand Binding Free-Energy Calculations Using Lambda Dynamics." Journal of Chemical Theory and Computation 16, no. 12 (2020): 7895–914. http://dx.doi.org/10.1021/acs.jctc.0c00830.
Full textSaito, Minoru, and Ryuji Tanimura. "Relative melting temperatures of RNase HI mutant proteins from MD simulation/free energy calculations." Chemical Physics Letters 236, no. 1-2 (1995): 156–61. http://dx.doi.org/10.1016/0009-2614(95)00181-3.
Full textZhang, Xia, and Yue Zeng. "Calculations of Henry's law constants for organic species using relative Gibbs free energy change." Fluid Phase Equilibria 376 (August 2014): 234–38. http://dx.doi.org/10.1016/j.fluid.2014.05.024.
Full textYunyu, Shi, Zhao Huimin, and Wang Cunxin. "Relative binding free energy calculations of DNA to daunomycin and its 13-dihydro analogue." International Journal of Biological Macromolecules 15, no. 4 (1993): 247–51. http://dx.doi.org/10.1016/0141-8130(93)90045-n.
Full textRies, Benjamin, Salomé Rieder, Clemens Rhiner, Philippe H. Hünenberger, and Sereina Riniker. "RestraintMaker: a graph-based approach to select distance restraints in free-energy calculations with dual topology." Journal of Computer-Aided Molecular Design 36, no. 3 (2022): 175–92. http://dx.doi.org/10.1007/s10822-022-00445-6.
Full textAzimi, Solmaz, Sheenam Khuttan, Joe Z. Wu, Rajat K. Pal, and Emilio Gallicchio. "Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method." Journal of Chemical Information and Modeling 62, no. 2 (2022): 309–23. http://dx.doi.org/10.1021/acs.jcim.1c01129.
Full textZou, Junjie, Jian Yin, Lei Fang, et al. "Computational Prediction of Mutational Effects on SARS-CoV-2 Binding by Relative Free Energy Calculations." Journal of Chemical Information and Modeling 60, no. 12 (2020): 5794–802. http://dx.doi.org/10.1021/acs.jcim.0c00679.
Full textNuno Palma, P., Maria João Bonifácio, Ana Isabel Loureiro, and Patrício Soares-da-Silva. "Computation of the binding affinities of catechol-O-methyltransferase inhibitors: Multisubstate relative free energy calculations." Journal of Computational Chemistry 33, no. 9 (2012): 970–86. http://dx.doi.org/10.1002/jcc.22926.
Full textRies, Benjamin, Karl Normak, R. Gregor Weiß, et al. "Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure." Journal of Computer-Aided Molecular Design 36, no. 2 (2022): 117–30. http://dx.doi.org/10.1007/s10822-021-00436-z.
Full textFiraha, Dzmitry, Yifei Michelle Liu, Jacco van de Streek, et al. "Predicting crystal form stability under real-world conditions." Nature 623, no. 7986 (2023): 324–28. http://dx.doi.org/10.1038/s41586-023-06587-3.
Full textHirono, Shuichi, and Peter A. Kollman. "Relative binding free energy calculations of inhibitors to two mutants (Glu46— Ala/Gln) of ribonuclease T1 using molecular dynamics/free energy perturbation approaches." "Protein Engineering, Design and Selection" 4, no. 3 (1991): 233–43. http://dx.doi.org/10.1093/protein/4.3.233.
Full textRustamov, Nassim, Asal Kasimova, Rashida Tursunkhodjaeva, and Mukaddas Tashmatova. "Calculation of the speed of movement of the car along the entire length of the path profile with different inclines of the sorting slide." E3S Web of Conferences 460 (2023): 06024. http://dx.doi.org/10.1051/e3sconf/202346006024.
Full textFuller, Jonathan C., Richard M. Jackson та Michael R. Shirts. "Configurational Preferences of Arylamide α-Helix Mimetics via Alchemical Free Energy Calculations of Relative Binding Affinities". Journal of Physical Chemistry B 116, № 35 (2012): 10856–69. http://dx.doi.org/10.1021/jp209041x.
Full textKaus, Joseph W., Edward Harder, Teng Lin, Robert Abel, J. Andrew McCammon, and Lingle Wang. "How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations." Journal of Chemical Theory and Computation 11, no. 6 (2015): 2670–79. http://dx.doi.org/10.1021/acs.jctc.5b00214.
Full textAl-Mazaideh, Ghassab. "A Study effect of Substituents X on Methylenecyclopentane and 1- Methylcyclopentene System." JORDANIAN JOURNAL OF ENGINEERING AND CHEMICAL INDUSTRIES (JJECI) 1, no. 1 (2018): 38–44. http://dx.doi.org/10.48103/jjeci142018.
Full textFowler, Philip W., Shantenu Jha, and Peter V. Coveney. "Grid-based steered thermodynamic integration accelerates the calculation of binding free energies." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1833 (2005): 1999–2015. http://dx.doi.org/10.1098/rsta.2005.1625.
Full textWan, Shunzhou, Peter V. Coveney, and Darren R. Flower. "Peptide recognition by the T cell receptor: comparison of binding free energies from thermodynamic integration, Poisson–Boltzmann and linear interaction energy approximations." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1833 (2005): 2037–53. http://dx.doi.org/10.1098/rsta.2005.1627.
Full textWan, Shunzhou, Andrew Potterton, Fouad S. Husseini, et al. "Hit-to-lead and lead optimization binding free energy calculations for G protein-coupled receptors." Interface Focus 10, no. 6 (2020): 20190128. http://dx.doi.org/10.1098/rsfs.2019.0128.
Full textMiyamoto, Shuichi, and Peter A. Kollman. "Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches." Proteins: Structure, Function, and Genetics 16, no. 3 (1993): 226–45. http://dx.doi.org/10.1002/prot.340160303.
Full textPoon, H. C., S. Y. Tong, W. F. Chung, and M. S. Altman. "Low Energy Electron Diffraction Analysis of Ultrathin Ag Films on W(110)." Surface Review and Letters 05, no. 06 (1998): 1143–49. http://dx.doi.org/10.1142/s0218625x9800147x.
Full textBhati, Agastya P., and Peter V. Coveney. "Large Scale Study of Ligand–Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols." Journal of Chemical Theory and Computation 18, no. 4 (2022): 2687–702. http://dx.doi.org/10.1021/acs.jctc.1c01288.
Full textPimenta, A. C., J. M. Martins, R. Fernandes, and I. S. Moreira. "Ligand-Induced Structural Changes in TEM-1 Probed by Molecular Dynamics and Relative Binding Free Energy Calculations." Journal of Chemical Information and Modeling 53, no. 10 (2013): 2648–58. http://dx.doi.org/10.1021/ci400269d.
Full textBubenchikov, Mikhail A., Dmitriy V. Mamontov, and Anna S. Chelnokova. "Relative dynamics of shells of a bifullerene complex." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 77 (2022): 54–67. http://dx.doi.org/10.17223/19988621/77/5.
Full textReddy, M. Rami, and Mark D. Erion. "Calculation of relative solvation free energy differences by thermodynamic perturbation method: Dependence of free energy results on simulation length." Journal of Computational Chemistry 20, no. 10 (1999): 1018–27. http://dx.doi.org/10.1002/(sici)1096-987x(19990730)20:10<1018::aid-jcc4>3.0.co;2-b.
Full textM, Sailendra, Sibbala S, Tripuramallu S, Kasula S, and Raj S. "Design of new Rivastigmine analogs based on Molecular Docking and Binding Free Energy calculations." International Journal of Drug Design and Discovery 3, no. 3 (2025): 869–77. https://doi.org/10.37285/ijddd.3.3.6.
Full textReddy, M. Rami, U. C. Singh, and Mark D. Erion. "Ab initio quantum mechanics-based free energy perturbation method for calculating relative solvation free energies." Journal of Computational Chemistry 28, no. 2 (2006): 491–94. http://dx.doi.org/10.1002/jcc.20510.
Full textYuan, Chengwu, and Gary A. Pope. "A New Method To Model Relative Permeability in Compositional Simulators To Avoid Discontinuous Changes Caused by Phase-Identification Problems." SPE Journal 17, no. 04 (2012): 1221–30. http://dx.doi.org/10.2118/142093-pa.
Full textCappel, Daniel, Jean-Christophe Mozziconacci, Tatjana Braun, and Thomas Steinbrecher. "Performance of Relative Binding Free Energy Calculations on an Automatically Generated Dataset of Halogen–Deshalogen Matched Molecular Pairs." Journal of Chemical Information and Modeling 61, no. 7 (2021): 3421–30. http://dx.doi.org/10.1021/acs.jcim.1c00290.
Full textClark, Anthony J., Tatyana Gindin, Baoshan Zhang, et al. "Free Energy Perturbation Calculation of Relative Binding Free Energy between Broadly Neutralizing Antibodies and the gp120 Glycoprotein of HIV-1." Journal of Molecular Biology 429, no. 7 (2017): 930–47. http://dx.doi.org/10.1016/j.jmb.2016.11.021.
Full textKuyper, Lee F., Robert N. Hunter, and David Ashton. "Free energy calculations on the relative solvation free energies of benzene, anisole, and 1,2,3-trimethoxybenzene: theoretical and experimental analysis of aromatic methoxy solvation." Journal of Physical Chemistry 95, no. 17 (1991): 6661–66. http://dx.doi.org/10.1021/j100170a052.
Full textMeng, Qingxi, Peiying Su, Fen Wang, and Shuhua Zhu. "Substituent effect and ligand exchange control the reactivity in ruthenium(II)-catalyzed hydroacylation of isoprenes and aldehydes ‖ A DFT study." Journal of Theoretical and Computational Chemistry 15, no. 03 (2016): 1650019. http://dx.doi.org/10.1142/s021963361650019x.
Full textHahn, David F., Gerhard König та Philippe H. Hünenberger. "Overcoming Orthogonal Barriers in Alchemical Free Energy Calculations: On the Relative Merits of λ-Variations, λ-Extrapolations, and Biasing". Journal of Chemical Theory and Computation 16, № 3 (2020): 1630–45. http://dx.doi.org/10.1021/acs.jctc.9b00853.
Full textThomas, Bert E. IV, and Peter A. Kollman. "Free Energy Perturbation Calculations of the Relative Binding Affinities of an 8-Subunit Cavitand for Alkali Ions in Methanol." Journal of the American Chemical Society 116, no. 8 (1994): 3449–52. http://dx.doi.org/10.1021/ja00087a034.
Full textKönig, Gerhard, and Bernard R. Brooks. "Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations." Journal of Computer-Aided Molecular Design 26, no. 5 (2011): 543–50. http://dx.doi.org/10.1007/s10822-011-9525-y.
Full text