Academic literature on the topic 'Relaxation paramagnétique du spin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Relaxation paramagnétique du spin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Relaxation paramagnétique du spin"
Levitt, Malcolm H. "Nuclear spin relaxation." Resonance 20, no. 11 (November 2015): 986–94. http://dx.doi.org/10.1007/s12045-015-0266-4.
Full textHu, L., S. S. Wu, and K. W. Yu. "Nuclear spin relaxation via spin fluctuations." Physica C: Superconductivity 185-189 (December 1991): 1113–14. http://dx.doi.org/10.1016/0921-4534(91)91780-8.
Full textAoyama, Y., and M. Tanaka. "Muon Spin Relaxation in Spin Systems." physica status solidi (b) 166, no. 1 (July 1, 1991): K49—K52. http://dx.doi.org/10.1002/pssb.2221660144.
Full textSu, M. Y., and O. Nalcioglu. "Spin-Lattice and Spin-Spin Relaxation in Porous Media: A Generalized Two Site Relaxation Model." Journal of Colloid and Interface Science 160, no. 2 (October 1993): 332–37. http://dx.doi.org/10.1006/jcis.1993.1404.
Full textLuke, G. M., A. Keren, L. P. Le, W. D. Wu, Y. J. Uemura, D. A. Bonn, L. Taillefer, and J. D. Garrett. "Muon spin relaxation inUPt3." Physical Review Letters 71, no. 9 (August 30, 1993): 1466–69. http://dx.doi.org/10.1103/physrevlett.71.1466.
Full textOhmi, Tetsuo, and Makoto Tsubota. "Spin relaxation in U2D23He." Journal of Low Temperature Physics 83, no. 3-4 (May 1991): 177–93. http://dx.doi.org/10.1007/bf00682117.
Full textWilamowski, Z., H. Przybylinska, and W. Jantsch. "Nonuniform spin relaxation mechanisms." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 1733–34. http://dx.doi.org/10.1016/0304-8853(94)01185-0.
Full textK. Hoffman, Stanisław. "Electron spin echo studies of spin-spin relaxation processes." Radiation Physics and Chemistry 45, no. 6 (June 1995): 979. http://dx.doi.org/10.1016/0969-806x(95)93970-h.
Full textSullivan, Neil S., Piotr Stachiowak, and Charles Parks. "Nuclear spin–spin relaxation in –Ne films." Physica B: Condensed Matter 329-333 (May 2003): 140–41. http://dx.doi.org/10.1016/s0921-4526(02)01937-3.
Full textPandurangi, A., A. Pelonero, R. Hamer, J. Otero, and L. Nadel. "Spin-spin relaxation time (T2) in schizophrenia." Schizophrenia Research 4, no. 3 (May 1991): 408–9. http://dx.doi.org/10.1016/0920-9964(91)90360-4.
Full textDissertations / Theses on the topic "Relaxation paramagnétique du spin"
Zinsou, Paul Komlan. "Amélioration d'un spectromètre de mesure des temps de relaxation courts. Application aux matériaux vitreux." Toulouse 3, 1996. http://www.theses.fr/1996TOU30050.
Full textJeannin, Marc. "Reconnaissance moléculaire dans des solutions ioniques paramagnétiques par relaxation nucléaire." Université Joseph Fourier (Grenoble), 1994. http://www.theses.fr/1994GRE10070.
Full textSouag, Nadia. "Caractérisation par des mesures magnétiques de l'oxyde de zinc entrant dans la composition des varistances." Toulouse 3, 1987. http://www.theses.fr/1987TOU30310.
Full textGiri, Rakshyakar. "Electron and nuclear spin dynamics in GaAs microcavities." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20037/document.
Full textWe obtained Faraday rotation (FR) up to 19° by using optical orientation of electron gas in n-doped bulk GaAs confined in a microcavity (Q=19000), in the absence of magnetic field. This strong rotation is achieved because the light makes multiple round trips in the microcavity. We also demonstrated fast optical switching of FR in sub-microsecond time scale by sampling the FR in a one-shot experiment under pulsed excitation. From the depolarization of FR by a transverse magnetic field, we deduce electron spin relaxation time of about 160 ns. A concept of FR cross-section as a proportionality coefficient between FR angle, electron spin density and optical path is introduced. This FR cross-section which defines the efficiency of spin polarized electrons in producing FR was estimated quantitatively and compared with theory. We also demonstrated non-destructive measurement of nuclear magnetization in n-GaAs via cavity enhanced FR. In contrast with the existing optical methods, this detection scheme does not require the presence of detrimental out-of-equilibrium electrons. Using this technique, we studied nuclear spin dynamics in n-GaAs with different doping concentrations. Contrary to simple expectation, the nuclear FR is found to be complex, and consists of two components with vastly different time constants. Two effects at the origin of FR have been identified: the conduction band spin splitting and the localized electron spin polairzation both induced by the Overhauser field. The first effect dominates the FR in both studied samples, while the FR induced by the localized electrons has been observed only in the metallic sample
Lopez, Robert. "Amélioration de la mesure du temps de relaxation spin-réseau T1 en résonance paramagnétique électronique. Application à l'acétate de cuivre et de calcium dilué et à un verre boraté dopé au Fe2O3." Toulouse 3, 1993. http://www.theses.fr/1993TOU30273.
Full textVIGOUROUX, CECILE. "Microdynamique des solutions : influence des espèces paramagnétiques sur la relaxation en RMN." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10068.
Full textSzilagyi, Petra Agota. "Study of iron-chelates in solid state and aqueous solutions using Mössbauer spectroscopy." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/142/.
Full textThis work has been devoted to the investigation of the ferric ethylenediaminetetraacetate, FeIIIEDTA and its analogues: the ferric cyclohexanediaminetetraacetate, FeIIICDTA and the ferric (N,N')ethylenediaminediacetate, FeIIIEDDA complexes. Structure of these complexes in aqueous solutions at different pH values have been proposed. The photodegradation of the FeIIIEDTA complex as well as the autoxidation of the Fe2+/EDTA system in solid state and in aqueous solution phase have been studied. Reaction pathways and structures for intermediate species forming in the course of the reaction between FeIIIEDTA/CDTA/EDDA and H2O2 have been proposed. The magnetic relaxation of the solid NaFeEDTA. 3H2O as well as the thermal stability and further aerial degradation of the decomposition products have been studied using Mössbauer spectroscopy
Marino, Robert. "Propriétés magnétiques et optiques de cristaux dopés terres rares pour l’information quantique." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10101/document.
Full textThe control of information is a competitive advantage today. Despite an intensification of the means developed to protect the data stream, it is currently not possible to exchange remotely and in a completely safe way information between two parties. However, the work of Bennett and Brassard have shown that it is possible to achieve a maximum level of security using a protocol for transmitting quantum information. This protocol is based on the use of telecom networks using quantum repeaters in place of conventional repeaters.The route studied in this thesis, carried out partly in the framework of the European Project QuRep, aims to improve knowledge on single crystals doped with rare earth ions that are good candidates for the development of quantum repeaters. Two main areas emerged: on the one hand, we tried to understand the success and limiting factors regarding the use of Nd : YSO single crystal as host for quantum memories. The objective was also to transfer the coherence from an electronic Zeeman level to the hyperfine levels. In a second step, we studied a crystal with a hyperfine structure directly accessible in optics, Er : YLF to assess its potential use for quantum memories. Among other things, we achieved the transfer of coherence from a Zeeman level to an hyperfine level with a storage time of over 300 microseconds, which allows to consider the development an on demand readout quantum memory in Nd : YSO
Bahr, Stefan. "Dynamique Quantique des Nanoaimants Moléculaires." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00338458.
Full textLa première partie présente des mesures d'aimantation résolues en temps de l'aimant moléculaire Fe8. Nous présentons plusieurs expériences indépendantes, qui mettent en évidence les différents couplages entre les spins et qui permettent d'observer la dynamique quantique des spins moléculaires. Les études de la dynamique de l'aimantation nous donne un accès direct au processus de relaxation de spin, en particulier ces études nous permettent d'étudier l'interaction entre spins et phonons. Dans ce contexte nous avons développé une technique « pompe-sonde » avec deux impulsions de micro-ondes décalées en temps pour étudier la dynamique très rapide des spins.
La deuxième partie concerne les mesures d'aimantation de l'aimant moléculaire Mn6 par magnétométrie Hall. De nombreuses mesures dans différents régimes en température et en champ magnétique nous permettent de caractériser les propriétés magnétiques de la molécule. Finalement, des simulations numériques qui s'appuient sur un modèle dimérique de la molécule (en présence des termes d'interaction par échange symétriques et antisymétriques) nous permettent d'expliquer théoriquement les transitions par effet tunnel.
Dol, Cyrielle. "Effet du nanoconfinement par des matériaux nanostructurés sur les propriétés des radicaux phénoxyle." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4739.
Full textAbstract : The aim of this study is to explore the influence of nanoconfinement on the phenoxyl radical behavior. A new methodology allowing the traceless solid state generation of phenoxyl radical was developed. It relies on the fragmentation of a diazene moieties and no solvent nor co-reagent are needed. A spin-trapping study was used to validate this approach. A wide variety of organic-inorganic hybrid materials, like mesoporous silica (SBA-15, MCM-41) and lamellar or porous polysilsesquioxane, functionalized with various phenoxyl radical precursors was synthesized. The spectroscopic properties of the phenoxyl radical contained in these materials were studied by EPR. These materials enable an amazing increase of the phenoxyl radical lifetime, they transform transient phenoxyl radical into persistent and even stable ones. The influence of the confinement has also been observed on the radical relaxation properties. Finally, an application of these materials as polymerization photo-initiator was successfully developed
Books on the topic "Relaxation paramagnétique du spin"
Yeung, Race R. Nuclear spin relaxation and morphology of solid polyolefins. Norwich: University of East Anglia, 1985.
Find full textLena, Mäler, ed. Nuclear spin relaxation in liquids: Theory, experiments, and applications. Boca Raton, FL: Taylor&Francis, 2006.
Find full textKowalewski, Jozef. Nuclear spin relaxation in liquids: Theory, experiments, and applications. Boca Raton, FL: Taylor & Francis, 2006.
Find full textDalmas, De Réotier Pierre, ed. Muon spin rotation, relaxation, and resonance: Applications to condensed matter. Oxford: Oxford University Press, 2010.
Find full textPoole, Charles P. Electron spin resonance: A comprehensive treatise on experimental techniques. Mineola, N.Y: Dover Publications, 1996.
Find full textStrutz, Thomas. High magnetic field electron spin-lattice relaxation in a diluted magnetic semiconductor: CdMnTe. Konstanz: Hartung-Gorre Verlag, 1991.
Find full textW, E. Heraeus Seminar (165th 1996 Bad Honnef Germany). Theory of spin lattices and lattice gauge models: Proceedings of the 165th WE-Heraeus-Seminar held at the Physikzentrum, Bad Honnef, Germany, 14-16 October 1996. Berlin: Springer-Verlag, 1997.
Find full textWu, Jie Qiang. Spin relaxation mechanisms controlling magnetic-field dependent radical pair recombination kinetics in nanoscopic reactors. Konstanz: Hartung-Gorre Verlag, 1993.
Find full textFree radicals: Biology and detection by spin trapping. New York: Oxford University Press, 1999.
Find full textBook chapters on the topic "Relaxation paramagnétique du spin"
Kowalewski, Jozef. "Nuclear spin relaxation." In Nuclear Magnetic Resonance, 76–138. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788010665-00076.
Full textVold, Regitze R. "Nuclear Spin Relaxation." In Nuclear Magnetic Resonance of Liquid Crystals, 253–88. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-6517-1_11.
Full textKimmich, Rainer. "Spin-Relaxation Functions." In NMR, 90–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60582-6_10.
Full textKimmich, Rainer. "Spin-Lattice Relaxation." In NMR, 102–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60582-6_12.
Full textDong, Ronald Y. "Nuclear Spin Relaxation Theory." In Partially Ordered Systems, 117–40. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1954-5_5.
Full textWiddra, W. "Spin Relaxation on Surfaces." In High Energy Spin Physics, 189–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76661-9_36.
Full textBöer, Karl W. "Orbital and Spin Relaxation." In Survey of Semiconductor Physics, 1182–94. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-9744-5_50.
Full textDong, Ronald Y. "Nuclear Spin Relaxation Theory." In Partially Ordered Systems, 111–32. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4684-0208-7_5.
Full textJozef, Kowalewski, and Mler Lena. "Simple Relaxation Theory." In Nuclear Spin Relaxation in Liquids, 15–29. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2017. http://dx.doi.org/10.1201/9781351264600-2.
Full textJozef, Kowalewski, and Mler Lena. "Cross-Relaxation Measurements." In Nuclear Spin Relaxation in Liquids, 153–67. Second edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018]: CRC Press, 2017. http://dx.doi.org/10.1201/9781351264600-9.
Full textConference papers on the topic "Relaxation paramagnétique du spin"
Isakovic, A. F., and G. W. Hitt. "Voltage dependent spin tunneling and spin relaxation in spin-leds." In 2011 IEEE GCC Conference and Exhibition (GCC). IEEE, 2011. http://dx.doi.org/10.1109/ieeegcc.2011.5752489.
Full textKaneko, Tomoaki, Mikito Koshino, and Tsuneya Ando. "Spin Relaxation in Quantum Wire." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730381.
Full textMalissa, H., W. Jantsch, G. Chen, H. Lichtenberger, T. Fromherz, F. Schäffler, G. Bauer, A. Tyryshkin, S. Lyon, and Z. Wilamowski. "Spin relaxation in SiGe islands." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730387.
Full textAsakawa, Kanta, Yutaro Tanaka, Kenta Uemura, Norihiro Matsuzaka, Kunihiro Nishikawa, Yuki Oguma, Hiroaki Usui, and Atsushi Hatakeyama. "Dwell time and spin relaxation probability of Rb atoms on anti-spin-relaxation coatings." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jtu3a.177.
Full textYu, Zhi-Gang. "Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids." In Photonics and Optoelectronics Meetings 2011, edited by Erich Kasper, Jinzhong Yu, Xun Li, Xinliang Zhang, Jinsong Xia, Junhao Chu, Zhijiang Dong, Bin Hu, and Yan Shen. SPIE, 2011. http://dx.doi.org/10.1117/12.919390.
Full textTatara, Gen, Akihito Takeuchi, and Noriyuki Nakabayashi. "Spin relaxation torque and spin transport in metallic ferromagnets." In SPIE NanoScience + Engineering, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2010. http://dx.doi.org/10.1117/12.861751.
Full textBowlan, P., S. A. Trugman, E. D. Bauer, X. Wang, N. J. Hur, S. W. Cheong, A. J. Taylor, D. A. Yarotski, and R. P. Prasankumar. "Spin-lattice relaxation in antiferromagnetic manganites." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.uth3a.6.
Full textKuroda, T. "Sub-picosecond Spin Relaxation in GaN." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994109.
Full textWu, Xizeng. "Optical pumping and hyperpolarized spin relaxation." In Third International Conference on Photonics and Imaging in Biology and Medicine, edited by Qingming Luo, Valery V. Tuchin, Min Gu, and Lihong V. Wang. SPIE, 2003. http://dx.doi.org/10.1117/12.546114.
Full textLyon, Stephen A. "Relaxation of candidate electron spin qubits." In Second International Symposium on Fluctuations and Noise, edited by Janusz M. Smulko, Yaroslav Blanter, Mark I. Dykman, and Laszlo B. Kish. SPIE, 2004. http://dx.doi.org/10.1117/12.550634.
Full textReports on the topic "Relaxation paramagnétique du spin"
Doughty, D. A., and Liviu Tomutsa. Investigation of wettability by NMR microscopy and spin-lattice relaxation. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10108859.
Full textBoss, Michael A., Andrew M. Dienstfrey, Zydrunas Gimbutas, Kathryn E. Keenan, Anthony B. Kos, Jolene D. Splett, Karl F. Stupic, and Stephen E. Russek. Magnetic resonance imaging biomarker calibration service: proton spin relaxation times. Gaithersburg, MD: National Institute of Standards and Technology, May 2018. http://dx.doi.org/10.6028/nist.sp.250-97.
Full textBulaevskii, L. N., P. C. Hammel, and V. M. Vinokur. Observation of the vortex lattice melting by NMR spin-lattice relaxation in the mixed state. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/198701.
Full textClayton, Steven Michael. Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1043544.
Full textFluss, M., R. Heffner, and G. Morris. Safety Report - Experiments 999 and 891 Muon Spin Relaxation in Pu and Pu-based Heavy Fermion Materials. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/15014253.
Full textMeyer, Benjamin Michael. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/815760.
Full text