Dissertations / Theses on the topic 'Remaining useful life estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Remaining useful life estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wang, Tianyi. "Trajectory Similarity Based Prediction for Remaining Useful Life Estimation." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282574910.
Full textBektas, Oguz. "An adaptive data filtering model for remaining useful life estimation." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/106052/.
Full textMosallam, Ahmed. "Remaining useful life estimation of critical components based on Bayesian Approaches." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2069/document.
Full textConstructing prognostics models rely upon understanding the degradation process of the monitoredcritical components to correctly estimate the remaining useful life (RUL). Traditionally, a degradationprocess is represented in the form of physical or experts models. Such models require extensiveexperimentation and verification that are not always feasible in practice. Another approach that buildsup knowledge about the system degradation over time from component sensor data is known as datadriven. Data driven models require that sufficient historical data have been collected.In this work, a two phases data driven method for RUL prediction is presented. In the offline phase, theproposed method builds on finding variables that contain information about the degradation behaviorusing unsupervised variable selection method. Different health indicators (HI) are constructed fromthe selected variables, which represent the degradation as a function of time, and saved in the offlinedatabase as reference models. In the online phase, the method estimates the degradation state usingdiscrete Bayesian filter. The method finally finds the most similar offline health indicator, to the onlineone, using k-nearest neighbors (k-NN) classifier and Gaussian process regression (GPR) to use it asa RUL estimator. The method is verified using PRONOSTIA bearing as well as battery and turbofanengine degradation data acquired from NASA data repository. The results show the effectiveness ofthe method in predicting the RUL
Tamssaouet, Ferhat. "Towards system-level prognostics : modeling, uncertainty propagation and system remaining useful life prediction." Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0079.
Full textPrognostics is the process of predicting the remaining useful life (RUL) of components, subsystems, or systems. However, until now, the prognostics has often been approached from a component view without considering interactions between components and effects of the environment, leading to a misprediction of the complex systems failure time. In this work, a prognostics approach to system-level is proposed. This approach is based on a new modeling framework: the inoperability input-output model (IIM), which allows tackling the issue related to the interactions between components and the mission profile effects and can be applied for heterogeneous systems. Then, a new methodology for online joint system RUL (SRUL) prediction and model parameter estimation is developed based on particle filtering (PF) and gradient descent (GD). In detail, the state of health of system components is estimated and predicted in a probabilistic manner using PF. In the case of consecutive discrepancy between the prior and posterior estimates of the system health state, the proposed estimation method is used to correct and to adapt the IIM parameters. Finally, the developed methodology is verified on a realistic industrial system: The Tennessee Eastman Process. The obtained results highlighted its effectiveness in predicting the SRUL in reasonable computing time
Mat, Jihin Rosmawati [Verfasser], and Dirk [Akademischer Betreuer] Söffker. "Structural Health Assessment and Remaining Useful Life Estimation for Industrial System / Rosmawati Mat Jihin ; Betreuer: Dirk Söffker." Duisburg, 2019. http://d-nb.info/119811150X/34.
Full textYang, Lei. "Methodology of Prognostics Evaluation for Multiprocess Manufacturing Systems." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1298043095.
Full textMaré, Charl Francois. "An investigation of CFD simulation for estimation of turbine RUL." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/69152.
Full textDissertation (MEng)--University of Pretoria, 2018.
National Research Foundation (NRF)
Mechanical and Aeronautical Engineering
MEng
Unrestricted
Spataru, Mihai. "Battery aging diagnosis and prognosis for Hybrid Electrical Vehicles Applications." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366364019.
Full textLe, Thanh Trung. "Contribution to deterioration modeling and residual life estimation based on condition monitoring data." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT099/document.
Full textPredictive maintenance plays a crucial role in maintaining continuous production systems since it can help to reduce unnecessary intervention actions and avoid unplanned breakdowns. Indeed, compared to the widely used condition-based maintenance (CBM), the predictive maintenance implements an additional prognostics stage. The maintenance actions are then planned based on the prediction of future deterioration states and residual life of the system. In the framework of the European FP7 project SUPREME (Sustainable PREdictive Maintenance for manufacturing Equipment), this thesis concentrates on the development of stochastic deterioration models and the associated remaining useful life (RUL) estimation methods in order to be adapted in the project application cases. Specifically, the thesis research work is divided in two main parts. The first one gives a comprehensive review of the deterioration models and RUL estimation methods existing in the literature. By analyzing their advantages and disadvantages, an adaption of the state of the art approaches is then implemented for the problem considered in the SUPREME project and for the data acquired from a project's test bench. Some practical implementation aspects, such as the issue of delivering the proper RUL information to the maintenance decision module are also detailed in this part. The second part is dedicated to the development of innovative contributions beyond the state-of-the-are in order to develop enhanced deterioration models and RUL estimation methods to solve original prognostics issues raised in the SUPREME project. Specifically, to overcome the co-existence problem of several deterioration modes, the concept of the "multi-branch" models is introduced. It refers to the deterioration models consisting of different branches in which each one represent a deterioration mode. In the framework of this thesis, two multi-branch model types are presented corresponding to the discrete and continuous cases of the systems' health state. In the discrete case, the so-called Multi-branch Hidden Markov Model (Mb-HMM) and the Multi-branch Hidden semi-Markov model (Mb-HsMM) are constructed based on the Markov and semi-Markov models. Concerning the continuous health state case, the Jump Markov Linear System (JMLS) is implemented. For each model, a two-phase framework is carried out for both the diagnostics and prognostics purposes. Through numerical simulations and a case study, we show that the multi-branch models can help to take into account the co-existence problem of multiple deterioration modes, and hence give better performances in RUL estimation compared to the ones obtained by standard "single branch" models
Diallo, Ousmane Nasr. "A data analytics approach to gas turbine prognostics and health management." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/42845.
Full textMishra, Madhav. "Model-based Prognostics for Prediction of Remaining Useful Life." Licentiate thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17263.
Full textGodkänd; 2015; 20151116 (madmis); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Madhav Mishra Ämne: Drift och underhållsteknik/Operation and Maintenance Engineering Uppsats: Model-based Prognostics for Prediction of Remaining Useful Life Examinator: Professor Uday Kumar Institutionen för samhällsbyggnad och naturresurser Avdelning Drift, underhåll och akustik Luleå tekniska universitet Diskutant: Accos. Professor Jyoti Kumar Sinha University of Manchester, Aerospace and Civil Engineering, Manchester Tid: Torsdag 17 december 2015 kl 10.00 Plats: F1031, Luleå tekniska universitet
Liu, Gang. "A Study on Remaining Useful Life Prediction for Prognostic Applications." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/456.
Full textAmmour, Rabah. "Contribution au diagnostic et pronostic des systèmes à évènements discrets temporisés par réseaux de Petri stochastiques." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMLH21/document.
Full textDue to the increasing complexity of systems and to the limitation of sensors number, developing monitoring methods is a main issue. This PhD thesis deals with the fault diagnosis and prognosis of timed Discrete Event Systems (DES). For that purpose, partially observed stochastic Petri nets are used to model the system. The model represents both the nominal and faulty behaviors of the system and characterizes the uncertainty on the occurrence of events as random variables with exponential distributions. It also considers partial measurements of both markings and events to represent the sensors of the system. Our main contribution is to exploit the timed information, namely the dates of the measurements for the fault diagnosis and prognosis of DES. From the proposed model and collected measurements, the behaviors of the system that are consistent with those measurements are obtained. Based on the event dates, our approach consists in evaluating the probabilities of the consistent behaviors. The probability of faults occurrences is obtained as a consequence. When a fault is detected, a method to estimate its occurrence date is proposed. From the probability of the consistent trajectories, a state estimation is deduced. The future possible behaviors of the system, from the current state, are considered in order to achieve fault prediction. This prognosis result is extended to estimate the remaining useful life as a time interval. Finally, a case study representing a sorting system is proposed to show the applicability of the developed methods
Khelif, Racha. "Estimation du RUL par des approches basées sur l'expérience : de la donnée vers la connaissance." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2019/document.
Full textOur thesis work is concerned with the development of experience based approachesfor criticalcomponent prognostics and Remaining Useful Life (RUL) estimation. This choice allows us to avoidthe problematic issue of setting a failure threshold.Our work was based on Case Based Reasoning (CBR) to track the health status of a new componentand predict its RUL. An Instance Based Learning (IBL) approach was first developed offering twoexperience formalizations. The first is a supervised method that takes into account the status of thecomponent and produces health indicators. The second is an unsupervised method that fuses thesensory data into degradation trajectories.The approach was then evolved by integrating knowledge. Knowledge is extracted from the sensorydata and is of two types: temporal that completes the modeling of instances and frequential that,along with the similarity measure refine the retrieval phase. The latter is based on two similaritymeasures: a weighted one between fixed parallel windows and a weighted similarity with temporalprojection through sliding windows which allow actual health status identification.Another data-driven technique was tested. This one is developed from features extracted from theexperiences that can be either mono or multi-dimensional. These features are modeled by a SupportVector Regression (SVR) algorithm. The developed approaches were assessed on two types ofcritical components: turbofans and ”Li-ion” batteries. The obtained results are interesting but theydepend on the type of the treated data
Wengbrand, Frida, and Sofia Eriksson. "Remaining useful life of customer relationships : Valuation in accordance with IFRS 3." Thesis, Jönköping University, Jönköping International Business School, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-500.
Full textIn the year of 2000 the European Commission adopted a communication
called EU Financial Reporting Strategy: the Way Forward. The communication intended to make all listed companies within the EU arrange their financial statements in accordance with
International Accounting Standards by 2005 at the latest. When the amendments of IFRS 3 was introduced in March 2004 it meant that companies from that moment on, when acquiring another company, have to allocate the part of the purchase price assignable to customer contracts and the related customer relationships as an intangible asset. IFRS 3 does not give any guidance whatsoever on how to
accomplish the above described allocation and estimate a true and fair value of customer contracts and relationships. Let alone any direction regarding the establishment of the remaining useful life of the customer relationships and contracts, which constitutes the
foundation of the fair valuation but also a true and fair view regarding amortizations. The purpose of this thesis is to examine how the establishments regarding remaining useful life of customer relationships and contracts have been done. Furthermore, the purpose of this thesis is to explain the decision process and motives that results in why management choose to apply the specific remaining useful life of customer relationships and contracts they do. This study has been carried out with a qualitative approach involving two listed group companies within three different industries, hence, six companies are involved in this thesis. Semi-structured telephone interviews have been made with the companies and the annual reports have been examined. In order to explain the actions behind the valuation and establishment process, the positive accounting theory has been used. None of the six companies taking part in this study have applied an outspoken method for the establishment of the remaining useful life of the customer relationships and contracts and only half of the companies have identified different customer groups. A relation can be identified between using an external consultant
and applying different remaining lives for different customer groups. All companies amortize the customer relationships and contracts on a straight-line basis. This can be explained by the positive accounting theory to some extent. All companies applied straight-line amortization even though some of them actually admit that a declining
balance would provide a fairer view. Furthermore, long amortization plans are used in some companies in order to decrease the amortization costs and hence increase the net income. Positive accounting has been applied in order to shift reported earnings.
Under år 2000 beslutade den Europeiska kommissionen om att anta ett
förslag som hette EU Financial Reporting Strategy: the Way Forward. Antagandet av förslaget innebar att alla noterade bolag inom EU skulle presentera sin redovisning och sina årsredovisningar i linje med bestämmelserna i IAS – International Accounting Standards senast år 2005. När lagändringarna i IFRS 3 introducerades i mars 2004 innebar det att noterade bolag vid företagsförvärv fortsättningsvis skulle allokera den del av köpeskillingen som är hänförlig till kundkontrakt och relaterade kundrelationer som immateriell tillgång i
balansräkningen. IFRS 3 ger ingen vägledning överhuvudtaget med avseende på hur bolagen ska genomföra den ovan beskrivna allokeringen och uppskatta ett rättvist värde på kundkontrakt och kundrelationer. Inte heller finns det någon anvisning angående fastställandet av livslängd på kundkontrakt och kundrelationer som i sin tur ligger till grund för en rättvis värdering och en rättvis avskrivningsplan.
Syftet med den här uppsatsen är att undersöka hur fastställandet av livslängden på kundrelationer och kundkontrakt har utförts. Syftet är även att förklara beslutsprocessen och de bakomliggande motiven till varför företagsledningen väljer att använda den livslängd på kundrelationer och kundkontrakt de faktiskt gör. Studien har genomförts med en kvalitativ ansats som har involverat två noterade
koncernbolag inom tre olika branscher, totalt har alltså sex bolag medverkat i uppsatsen. Semistrukturerade telefonintervjuer har gjorts med de involverade bolagen och även deras årsredovisningar har undersökts. För att kunna förklara handlandet angående värderingsprocessen och livslängdsprocessen har den positiva redovisningsteorin använts. Inget av de sex bolagen som medverkat i studien har använt sig av någon etablerad metod för att fastställa den återstående livslängden av kundrelationerna och kundkontrakten, och endast hälften av företagen har identifierat olika grupper av kunder. Ett samband har identifierats mellan att använda sig av en extern konsult vid fastställandet och att använda sig av olika återstående livslängder för olika kundgrupper. Alla sex företagen använder sig av linjär avskrivning på kundkontrakten och kundrelationerna. Detta kan till en viss gräns förklaras med positiv redovisningsteori. Alla företagen har använt sig av linjär avskrivning även om vissa av företagen till och med medger att
degressiv avskrivning skulle ge en mer rättvis bild. Dessutom har långa avskrivningstider använts i en del av företagen för att sänka avskrivningskostnaderna som i sin tur ökar resultatet. Positiv redovisningsteori har alltså använts för att flytta vinster till innevarande år.
Liang, Jie Jun Yi. "Novel framework for wind turbine fault diagnosis and remaining useful life prediction." Thesis, University of Macau, 2015. http://umaclib3.umac.mo/record=b3335776.
Full textOyharcabal, Astorga Nicolás. "Convolutional recurrent neural networks for remaining useful life prediction in mechanical systems." Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/168514.
Full textLa determinación de la vida útil remanente (RUL del inglés "Remaining Useful Life") de una máquina, equipo, dispositivo o elemento mecánico, es algo en lo que se ha estado trabajando en los últimos años y que es crucial para el futuro de cualquier industria que así lo requiera. El continuo monitoreo de máquinas junto a una buena predicción de la RUL permite la minimización de costos de mantención y menor exposición a fallas. Sin embargo, los datos obtenidos del monitoreo son variados, tienen ruido, poseen un carácter secuencial y no siempre guardan estricta relación con la RUL, por lo que su estimación es un problema difícil. Es por ello que en la actualidad se utilizan distintas clases de Redes Neuronales y en particular, cuando se quiere modelar problemas de carácter secuencial, se utilizan las Redes Neuronales Recurrentes o RNN (del inglés "Recurrent Neural Network") como LSTM (del inglés "Long Short Term Memory") o JANET (del inglés "Just Another NETwork"), por su capacidad para identificar de forma autónoma patrones en secuencias temporales, pero también junto a estas últimas redes, también se utilizan alternativas que incorporan la Convolución como operación para cada célula de las RNN y que se conocen como ConvRNN (del inglés "Convolutional Recurrent Neural Network"). Estas últimas redes son mejores que sus pares convolucional y recurrentes en ciertos casos que requieren procesar secuencias de imágenes, y en el caso particular de este trabajo, series de tiempo de datos de monitoreo que son suavizados por la Convolución y procesados por la Recurrencia. El objetivo general de este trabajo es determinar la mejor opción de ConvRNN para la determinación de la RUL de un turbofan a partir de series de tiempo de la base de datos C-MAPSS. También se estudia cómo editar la base de datos para mejorar la precisión de una ConvRNN y la aplicación de la Convolución como una operación primaria en una serie de tiempo cuyos parámetros muestran el comportamiento de un turbofan. Para ello se programa una LSTM Convolucional, LSTM Convolucional Codificador-Decodificador, JANET Convolucional y JANET Convolucional Codificador-Decodificador. A partir de esto se encuentra que el modelo JANET Convolucional Codificador-Decodificador da los mejores resultados en cuanto a exactitud promedio y cantidad de parámetros necesarios (entre menos mejor pues se necesita menos memoria) para la red, siendo además capaz de asimilar la totalidad de las bases de datos C-MAPSS. Por otro lado, también se encuentra que la RUL de la base de datos puede ser modificada para datos antes de la falla. Para la programación y puesta en marcha de las diferentes redes, se utilizan los computadores del laboratorio de Integración de Confiabilidad y Mantenimiento Inteligente (ICMI) del Departamento de Ingeniería Mecánica de la Universidad de Chile.
Mohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textSiegel, David. "Evaluation of Health Assessment Techniques for Rotating Machinery." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250282528.
Full textGedafa, Daba Shabara. "Estimation of remaining service life of flexible pavements from surface deflections." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1026.
Full textChoi, Jeong-Hoon. "The fracture analysis and remaining life estimation of the AVLB sub-components." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1759.
Full textTitle from document title page. Document formatted into pages; contains xiv, 279 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 180-183).
SOUTO, MAIOR Caio Bezerra. "Remainig useful life prediction via empirical mode decomposition, wavelets and support vector machine." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/24930.
Full textMade available in DSpace on 2018-06-26T22:26:10Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Caio Bezerra Souto Maior.pdf: 3924685 bytes, checksum: 6968386bf75059f45ee80306322d2a56 (MD5) Previous issue date: 2017-02-21
CAPES
The useful life time of equipment is an important variable related to reliability and maintenance. The knowledge about the useful remaining life of operation system by means of a prognostic and health monitoring could lead to competitive advantage to the corporations. There are numbers of models trying to predict the reliability’s variable behavior, such as the remaining useful life, from different types of signal (e.g. vibration signal), however several could not be realistic due to the imposed simplifications. An alternative to those models are the learning methods, used when exist many observations about the variable. A well-known method is Support Vector Machine (SVM), with the advantage that is not necessary previous knowledge about neither the function’s behavior nor the relation between input and output. In order to achieve the best SVM’s parameters, a Particle Swarm Optimization (PSO) algorithm is coupled to enhance the solution. Empirical Mode Decomposition (EMD) and Wavelets rise as two preprocessing methods seeking to improve the input data analysis. In this paper, EMD and wavelets are used coupled with PSO+SVM to predict the rolling bearing Remaining Useful Life (RUL) from a vibration signal and compare with the prediction without any preprocessing technique. As conclusion, EMD models presented accurate predictions and outperformed the other models tested.
O tempo de vida útil de um equipamento é uma importante variável relacionada à confiabilidade e à manutenção, e o conhecimento sobre o tempo útil remanescente de um sistema em operação, por meio de um monitoramento do prognóstico de saúde, pode gerar vantagens competitivas para as corporações. Existem diversos modelos utilizados na tentativa de prever o comportamento de variáveis de confiabilidade, tal como a vida útil remanescente, a partir de diferentes tipos de sinais (e.g. sinal de vibração), porém alguns podem não ser realistas, devido às simplificações impostas. Uma alternativa a esses modelos são os métodos de aprendizado, utilizados quando se dispõe de diversas observações da variável. Um conhecido método de aprendizado supervisionado é o Support Vector Machine (SVM), que gera um mapeamento de funções de entrada-saída a partir de um conjunto de treinamento. Para encontrar os melhores parâmetros do SVM, o algoritmo de Particle Swarm Optimization (PSO) é acoplado para melhorar a solução. Empirical Mode Decomposition (EMD) e Wavelets são usados como métodos pré-processamento que buscam melhorar a qualidade dos dados de entrada para PSO+SVM. Neste trabalho, EMD e Wavelets foram usadas juntamente com PSO+SVM para estimar o tempo de vida útil remanescente de rolamentos a partir de sinais de vibração. Os resultados obtidos com e sem as técnicas de pré-processamento foram comparados. Ao final, é mostrado que modelos baseados em EMD apresentaram boa acurácia e superaram o desempenho dos outros modelos testados.
Espinoza, Villegas Pablo Andrés. "A simulation engine for ion-lithium battery packs in electric vehicles based on energetic autonomy and remaining useful life criteria." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/144139.
Full textLos últimos desarrollos en baterías de ión-litio han permitido una verdadera revolución en la industria automotriz. Los vehículos eléctricos representan una porción del mercado que aumenta año a año. Estos vehículos operan bajo condiciones variables, requiriendo de bancos de baterías para hacer frente a las respectivas demandas de torque y potencia. En este trabajo construimos un simulador que, dado el tamaño del banco, determina cuando una recarga (autonomía) o reemplazo del banco (vida útil remanente) son necesarios. Con este fin estudiamos los indicadores de Estado-de-Carga (SOC), y Estado-de-Salud (SOH), usando modelos en espacio de estados discreto. Las predicciones se basan en una caracterización probabilística de los perfiles de uso en un vehículo eléctrico, que a su vez son una función de entradas genéricas, e.g. el mapa de la misión, las características mecánicas del vehículo, perfiles de conducción y configuración del banco de baterías. En nuestro enfoque estocástico, el pronóstico para el SOC y SOH son generados en un esquema basado en filtro de partículas, con medidas de riesgo e intervalos de confianza obtenidos tanto para el fin-de- la-descarga (en cada ciclo) como para el fin-de-vida-útil (reemplazo). Estos esquemas se benefician de la incorporación de metamodelos para la resistencia óh- mica interna y la eficiencia de Coulomb del banco. El primero depende de la demanda de corriente y el SOC, mientras el segundo se basa en la magnitud de la corriente y la profundi- dad de cada descarga. Ambos metamodelos son incluidos dentro del esquema del SOC/SOH, i) efectivamente introduciendo nueva fenomenología en ellos, y ii) proveyendo de una conex- ión entre el SOC/SOH y el cómo cada descarga afecta el estado de salud del banco de baterías como un todo. También presentamos una metodología para experimentos de laboratorio que son capaces de determinar estas cantidades empíricamente en baterías de ión-litio. Consideramos efectos ignorados hasta ahora en este tipo de modelos empíricos, i.e. cómo las condiciones de operación en una descarga conciernen al pronóstico de la vida útil rema- nente, y cómo las dependencias de la impedancia interna afectan la autonomía del vehículo. Un sub-producto de este trabajo es el mejoramiento del rango de opciones, modularidad y velocidad de ejecución de algoritmos. Finalmente, establecemos aquí las bases para trabajo futuro en diseño óptimo de bancos de baterías en función de perfiles de uso particulares.
Tan, Hwei-Yang. "Statistical methods for the analysis of corrosion data for integrity assessments." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15275.
Full textRodriguez, obando Diego Jair. "From Deterioration Modeling to Remaining Useful Life Control : a comprehensive framework for post-prognosis decision-making applied to friction drive systems." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT086/document.
Full textRemaining Useful Lifetime (RUL) can be simply defined as a prediction of the remaining time that a system is able to perform its intended function, from the current time to the final failure. This predicted time mostly depends on the state of deterioration of the system components and their expected future operating conditions. Thus, the RUL prediction is an uncertain process and its control is not trivial task.In general, the purpose for predicting the RUL is to influence decision-making for the system. In this dissertation a comprehensive framework for controlling the RUL is presented. Model uncertainties as well as system disturbances have been considered into the proposed framework. Issues as uncertainty treatment and inclusion of RUL objectives in the control strategy are studied from the modeling until a final global control architecture. It is shown that the RUL can be predicted from a suitable estimation of the deterioration, and from hypothesis on the future operation conditions. Friction drive systems are used for illustrating the usefulness of the aforementioned global architecture. For this kind of system, the friction is the source of motion and at the same time the source of deterioration. This double characteristic of friction is a motivation for controlling automatically the deterioration of the system by keeping a trade-off, between motion requirements and desired RUL values. In this thesis, a new control-oriented model for friction drive systems, which includes a dynamical model of the deterioration is proposed. The amount of deterioration has been considered as a function of the dissipated energy, at the contact surface, during the mechanical power transmission. An approach to estimate the current deterioration condition of a friction drive system is proposed. The approach is based on an Extended Kalman Filter (EKF) which uses an augmented model including the mechanical dynamical system and the deterioration dynamics. At every time instant, the EKF also provides intervals which surely includes the actual deterioration value which a given probability. A new architecture for controlling the RUL is proposed, which includes: a deterioration condition monitoring system (for instance the proposed EKF), a system operation condition estimator, a RUL controller system, and a RUL actuation principle. The operation condition estimator is based on the assumption that it is possible quantify certain characteristics of the motion requirements, for instance the duty cycle of motor torques. The RUL controller uses a cost function that weights the motion requirements and the desired RUL values to modify a varying-parameter filter, used here as the RUL-actuating-principle. The RUL-actuating-principle is based on a modification of the demanded torques, coming from a possible motion controller system. Preliminary results show that it is possible to control de RUL according to the proposed theoretical framework
Javed, kamran. "A robust and reliable data-driven prognostics approach based on Extreme Learning Machine and Fuzzy Clustering." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2021/document.
Full textPrognostics and Health Management (PHM) aims at extending the life cycle of engineerin gassets, while reducing exploitation and maintenance costs. For this reason,prognostics is considered as a key process with future capabilities. Indeed, accurateestimates of the Remaining Useful Life (RUL) of an equipment enable defining furtherplan of actions to increase safety, minimize downtime, ensure mission completion andefficient production.Recent advances show that data-driven approaches (mainly based on machine learningmethods) are increasingly applied for fault prognostics. They can be seen as black-boxmodels that learn system behavior directly from Condition Monitoring (CM) data, usethat knowledge to infer its current state and predict future progression of failure. However,approximating the behavior of critical machinery is a challenging task that canresult in poor prognostics. As for understanding, some issues of data-driven prognosticsmodeling are highlighted as follows. 1) How to effectively process raw monitoringdata to obtain suitable features that clearly reflect evolution of degradation? 2) Howto discriminate degradation states and define failure criteria (that can vary from caseto case)? 3) How to be sure that learned-models will be robust enough to show steadyperformance over uncertain inputs that deviate from learned experiences, and to bereliable enough to encounter unknown data (i.e., operating conditions, engineering variations,etc.)? 4) How to achieve ease of application under industrial constraints andrequirements? Such issues constitute the problems addressed in this thesis and have ledto develop a novel approach beyond conventional methods of data-driven prognostics
Santini, Thomas. "Contribution à l'étude de la fiabilité des MOSFETs en carbure de silicium." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI021/document.
Full textRecent years have seen SiC MOSFET reach the industrial market. This type of device is particularly adapted to the design of power electronics equipment with high efficiency and high reliability capable to operate in high ambient temperature. Nevertheless the question of the SiC MOSFET reliability has to be addressed prior to considering the implementation of such devices in an aeronautic application. The failure mechanisms linked to the gate oxide of the SiC MOSFET have for a long time prevented the introduction of the device. In this manuscript we propose to study the reliability of the first generation of SiC MOSFET. First, the mechanism known as the Time–Dependent Dielectric Breakdown is studied through experimental results extracted from literature. Our study shows the successful application of a Weibull law to model the time-to-failure distribution extracted from the accelerated tests. The results show also a significant improvement of the SiC MOSFET structure with respect to this phenomenon. In a second step, the impact of the threshold voltage instability is quantified through accelerated tests known as High Temperature Gate Bias. The collected degradation data are modeled using a non-homogeneous Gamma process. This approach allows taking into account the variability between devices tested under the same conditions. Acceleration factors have been proposed with respect to temperature and gate voltage. Eventually the study delivers a primary estimation of the remaining useful lifetime of the SiC MOSFET in a typical aeronautic application
Foulard, Stéphane. "Online and real-time load monitoring for remaining service life prediction of automotive transmissions : damage level estimation of transmission components based on a torque acquisition." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0012.
Full textThis research work proposes the development and the validation of an online and real-time method to predict the remaining service life of the gearwheels of automotive transmissions, with the aim of implementing it on standard control units of series-production vehicles. By focusing on the proposition of a simple, reliable and easy-to-implement solution, the system relies on the combination of an acquisition method of the torques acting in the transmission and a continuous estimation of the damage levels of the gearwheels. Firstly, a state of the art and the theoretical basics are presented concerning a damage estimation based on a nominal stress concept and a linear damage accumulation. The global structure of the damage estimation algorithm is then analyzed and the methodological approach adopted for its development is explained. This is based in principal on a drivetrain model, validated with tests and measurements, where a particular attention is paid to the representation of the gear shifts and the transmission dynamics. Two types of transmissions are considered, namely a standard manual transmission and a dual clutch transmission mounted in series-production cars. Respectively a requirement analysis for the configuration of the algorithm as well as a requirement specification for the torque acquisition method are performed. On this basis, a state observer is developed and validated, which is able to reconstruct the clutch torque and the transmission output torque. Finally, a synthesis of the complete method and the final version of the algorithm are addressed, and the economic and ecological advantages of the introduction of the method in the context of lightweight design measures are discussed and evaluated
Kurzfassung Diese Dissertation beschreibt die Entwicklung einer Online- und Echtzeit-Methode zur Vorhersage der restlichen Lebensdauer von den Zahnradern eines Kraftfahrzeuggetriebes. Diese Methode ist fur eine Implementierung auf Standard-Steuergeraten vorgesehen. Durch die Fokussierung auf eine einfache, zuverlassige und leicht zu implementierende Losung beruht die Methode auf der Kombination aus einer Drehmomenterfassungsmethode und einer kontinuierlichen Vorhersage des Schadigungsniveaus der Zahnrader. Zuerst werden der Stand der Technik und die theoretischen Grundlagen von Schadigungsberechnungen basierend auf dem Nennspannungskonzept und einer linearen Schadensakkumulation dargestellt. Danach wird die globale Struktur des Schadigungsberechnungsalgorithmus gezeigt und die fur die Entwicklung ausgewahlte methodische Vorgehensweise erlautert. Diese bezieht sich grundsatzlich auf ein durch Testfahrten und Messungen verifiziertes Antriebsstrangmodell, welches besonders die Schaltungen und die Dynamik des Getriebes berucksichtigt. Ein Serien-Handschaltgetriebe und ein Serien-Doppelkupplungsgetriebe werden betrachtet. Fur diese zwei Getriebetypen werden eine Anforderungsanalyse zur Konfiguration des Algorithmus sowie eine Anforderungsspezifikation fur die Drehmomenterfassungsmethode durchgefuhrt. Auf Basis dieser Untersuchungen wird dann ein Zustandsbeobachter zur Rekonstruktion des Kupplungs- und Getriebeausgangsdrehmoments entwickelt und validiert. Infolgedessen werden eine Synthese der kompletten Methode und die Endversion des Algorithmus vorgestellt. Abschliesend werden die Wirtschaftlichkeit sowie die okologischen Vorteile in Bezug auf die Einfuhrung der Lebensdauermonitoringmethode im Rahmen von Leichtbaumasnahmen diskutiert und bewertet
Tian, Wenmeng. "Monitoring and Prognostics for Broaching Processes by Integrating Process Knowledge." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78680.
Full textPh. D.
Nyman, Jacob. "Machinery Health Indicator Construction using Multi-objective Genetic Algorithm Optimization of a Feed-forward Neural Network based on Distance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-298084.
Full textEstimering av maskinhälsa och prognos av framtida fel är kritiska steg för underhållsbeslut. Många av de befintliga metoderna använder icke-väglett (unsupervised) lärande för att konstruera hälsoindikatorer som beskriver maskinens tillstånd över tid. Detta sker genom att mäta olikheter mellan det nuvarande tillståndet och antingen de friska eller fallerande tillstånden i systemet. Det här tillvägagångssättet kan fungera väl, men om de resulterande hälsoindikatorerna är otillräckliga så finns det inget enkelt sätt att styra algoritmen mot bättre. I det här examensarbetet undersöks en ny metod för konstruktion av hälsoindikatorer som försöker lösa det här problemet. Den är baserad på avståndsmätning efter att ha transformerat indatat till ett nytt vektorrum genom ett feed-forward neuralt nätverk. Nätverket är tränat genom en multi-objektiv optimeringsalgoritm, NSGA-II, för att optimera kriterier som är önskvärda hos en hälsoindikator. Därefter används den konstruerade hälsoindikatorn som indata till en gated recurrent unit (ett neuralt nätverk som hanterar sekventiell data) för att förutspå återstående livslängd hos systemet i fråga. Metoden jämförs med andra metoder på ett dataset från NASA som simulerar degradering hos turbofan-motorer. Med avseende på storleken på de använda neurala nätverken så är resultatet relativt bra, men överträffar inte resultaten rapporterade från några av de senaste metoderna. Metoden testas även på ett simulerat dataset baserat på elevatorer som fraktar säd med två oberoende fel. Metoden lyckas skapa en hälsoindikator som har en önskvärd form för båda felen. Dock så överskattar den senare modellen, som använde hälsoindikatorn, återstående livslängd vid estimering av det mer ovanliga felet. På båda dataseten jämförs metoden för hälsoindikatorkonstruktion med en basmetod utan transformering, d.v.s. avståndet mäts direkt från grund-datat. I båda fallen överträffar den föreslagna metoden basmetoden i termer av förutsägelsefel av återstående livslängd genom gated recurrent unit- nätverket. På det stora hela så visar sig metoden vara flexibel i skapandet av hälsoindikatorer med olika attribut och p.g.a. metodens egenskaper är den adaptiv för olika typer av metoder som förutspår återstående livslängd.
Alghassi, Alireza. "Prognostics and health management of power electronics." Thesis, Cranfield University, 2016. http://dspace.lib.cranfield.ac.uk/handle/1826/10968.
Full textSajeva, Lisa. "Predizione del tempo rimanente di vita di un impianto mediante Hidden Markow Model." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13846/.
Full textVoronin, Artyom. "Možnosti prediktivní údržby pneumatických pístů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444967.
Full textAggab, Toufik. "Pronostic des systèmes complexes par l’utilisation conjointe de modèle de Markov caché et d’observateur." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2051/document.
Full textThe research presented in this thesis deals of diagnosis and prognosis of complex systems. It presents two approaches that generate useful indicators for optimizing maintenance strategies. Specifically, these approaches are used to assess the level of degradation and estimate the Remaining Useful Life of the system. The aim of these approaches is to overcome for the lack of degradation indicators. The developments are based on observers, Hidden Markov Model formalism, statistical inference methods and learning-based methods in order to characterize and predict the system operating modes. To illustrate the proposed failure diagnosis/prognosis approaches, a simulated tank level control system, an induction motor and a Li-Ion battery were used
Delmas, Adrien. "Contribution à l'estimation de la durée de vie résiduelle des systèmes en présence d'incertitudes." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2476/document.
Full textPredictive maintenance strategies can help reduce the ever-growing maintenance costs, but their implementation represents a major challenge. Indeed, it requires to evaluate the health state of the component of the system and to prognosticate the occurrence of a future failure. This second step consists in estimating the remaining useful life (RUL) of the components, in Other words, the time they will continue functioning properly. This RUL estimation holds a high stake because the precision and accuracy of the results will influence the relevance and effectiveness of the maintenance operations. Many methods have been developed to prognosticate the remaining useful life of a component. Each one has its own particularities, advantages and drawbacks. The present work proposes a general methodology for component RUL estimation. The objective i to develop a method that can be applied to many different cases and situations and does not require big modifications. Moreover, several types of uncertainties are being dealt With in order to improve the accuracy of the prognostic. The proposed methodology can help in the maintenance decision making process. Indeed, it is possible to select the optimal moment for a required intervention thanks to the estimated RUL. Furthermore, dealing With the uncertainties provides additional confidence into the prognostic results
Gerdes, Mike. "Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution." Diss., Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. http://d-nb.info/1202830382.
Full textHassan, Muhammad. "Production 4.0 of Ring Mill 4 Ovako AB." Thesis, Högskolan i Gävle, Elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-33405.
Full textPradella, Lorenzo. "A data-driven prognostic approach based on AR identification and hidden Markov models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textHuang, Fei. "Contributions à l'élaboration des modèles à partir de données pour l'estimation de la durée de vie résiduelle des roulements." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0019.
Full textRemaining useful life (RUL) estimation for bearings degradation monitoring is an important metric for decision making in condition based maintenance of rotating mechanics. RUL estimation involves generally two steps: degradation indicator extraction and model identification. Common vibration signal based features for bearings degradation monitoring are sensible on the last stage of the degradation process. In this thesis, we propose new bearing degradation monitoring indicators that are monotonic and incorporate historical degradation information. To overcome the drawback of a small size training datasets for model identification, we elaborated a mixture distribution analysis based fuzzy model identification method for RUL estimation. Furthermore, we proposed a method to tune the parameters of the fuzzy models for bearings RUL estimation when new knowledge becomes available. The aim is to improve the accuracy of the RUL estimation through a knowledge accumulation process
Krupa, Miroslav. "Metody technické prognostiky aplikovatelné v embedded systémech." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233568.
Full textJha, Mayank Shekhar. "Diagnostic et Pronostic de Systèmes Dynamiques Incertains dans un contexte Bond Graph." Thesis, Ecole centrale de Lille, 2015. http://www.theses.fr/2015ECLI0027/document.
Full textThis thesis develops the approaches for diagnostics and prognostics of uncertain dynamic systems in Bond Graph (BG) modeling framework. Firstly, properties of Interval Arithmetic (IA) and BG in Linear Fractional Transformation, are integrated for representation of parametric and measurement uncertainties on an uncertain BG model. Robust fault detection methodology is developed by utilizing the rules of IA for the generation of adaptive interval valued thresholds over the nominal residuals. The method is validated in real time on an uncertain and highly complex steam generator system.Secondly, a novel hybrid prognostic methodology is developed using BG derived Analytical Redundancy Relationships and Particle Filtering algorithms. Estimations of the current state of health of a system parameter and the associated hidden parameters are achieved in probabilistic terms. Prediction of the Remaining Useful Life (RUL) of the system parameter is also achieved in probabilistic terms. The associated uncertainties arising out of noisy measurements, environmental conditions etc. are effectively managed to produce a reliable prediction of RUL with suitable confidence bounds. The method is validated in real time on an uncertain mechatronic system.Thirdly, the prognostic methodology is validated and implemented on the electrical electro-chemical subsystem of an industrial Proton Exchange Membrane Fuel Cell. A BG of the latter is utilized which is suited for diagnostics and prognostics. The hybrid prognostic methodology is validated, involving real degradation data sets
Ginzarly, Riham. "Contribution à la modélisation et au pronostic des défaillances d'une machine synchrone à aimants permanents." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR038/document.
Full textThe core of the work is to build an accurate model of the electrical machine where the prognostic technique is applied. In this thesis we started by a literature review on hybrid electric vehicles (HEV), the different types of electrical machine used in HEV’s and the different types of faults that may occur in those electrical machine. We also identify the useful monitoring parameters that are beneficial for those different types of faults. Then, a survey is presented where all the prognostic techniques that can be applied on this application are enumerated. The electromagnetic, thermal and vibration finite element model (FEM) of the permanent magnet machine is presented. The model is built at healthy operation and when a fault is integrated. The considered types of faults are:demagnetization, turn to turn short circuit and eccentricity. A confrontation between analytical and FEM (numerical method) for electromagnetic machine modeling is illustrated. Fault indicators where useful measured parameters forfault identification are recognized and useful features from the measured parameters are extracted; torque, temperature and vibration signal are elaborated for healthy and faulty states. The strategy of the adopted prognostic approach which is Hidden Markov Model (HMM) is explained. The technical aspect of the method is presented and the prognostic model is formulated. HMM is applied to detect and localize small scale fault small scale faults were where a systematic strategy is developed. The aging of the machine’s equipment,specially the sensitive ones that are the stator coil’s and the permanent magnet, is a very important matter for RUL calculation. An estimation strategy for RUL calculation is presented and discussed for those mentioned machine’s components. Closed loop configuration is very important; it is adopted by all available vehicle systems. Hence, the same previously mentioned steps are applied for a closed loop configuration too. A global model where the input of the machine’s FEM comes from the modeled inverter is built
Chang-Kuei, Kuo, and 郭昶逵. "Enhancing Convolutional Neural Network Deep Learning for Remaining Useful Life Estimation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/10174877759044519879.
Full text國立中央大學
資訊工程學系
105
The smart factory becomes a hot research topic recently. Prognostic health management (PHM) plays a critical role in smart factory applications to produce different level of prognostics, such as failure prediction and remaining useful life (RUL) estimation, for machines or components. This thesis enhances the convolutional neural network (CNN) deep learning for RUL estimation in smart factory applications. A CNN is a special type of deep neural networks (DNNs) used in deep learning for analyzing image data for the applications of image recognition and video recognition. It has convolution layers, pooling layers, and fully connected layers. A convolution layer contains many filters to abstract features from input data, and a pooling layer can reduce data dimensionality without losing features. The CNN deep learning has been applied in an earlier study for RUL estimation. This thesis enhances the learning by applying more sophisticated data pre-processing, a better optimizer, namely the adaptive moment estimation (Adam) method, and a proper activation function, namely the softplus function. The enhanced CNN deep learning is applied to NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set to estimate the RUL of aero-propulsion engines. Its performance is evaluated by a scoring function that can measure the RUL estimation accuracy. The evaluation results are compared with those of other methods using the multi-layer perceptron (MLP), support vector regression (SVR), relevance vector regression (RVR) and traditional CNN. We find that the enhanced CNN deep learning method is superior to other methods.
Lin, Yu-Hsin, and 林育新. "Techniques Developments for Faulty Ball Bearing Identification and Remaining Useful Life Estimation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/62yknd.
Full text國立中正大學
機械工程系研究所
105
The purpose of this study is to develop an intelligent diagnosis system for rolling bearings. The diagnosis for rolling bearings is aiming to identify its overall healthy state instead of detail examination for the faulty component inside the bearing. The reason is that in practice the whole bearing in the mechanical equipment is required to be replaced even though the faulty is caused by some of its components, e.g. the inner ring, outer ring, the roller etc. The thesis consists of three parts. In the first part, a novel bearing diagnosis technique called Spectral Kurtosis Entropy (SKE) which combines Entropy and Spectral Kurtosis to assess the bearing healthy state is proposed. The performance of this proposed SKE is assessed using Fisher Score (FS). In the second part, Self-organizing map (SOM) is utilized identify the faulty bearing from the healthy one with SKE, Sample Entropy (SE) and Root mean square (RMS) from bearing vibration signal as features respectively. A method of estimation for bearing Remaining Useful Life (RUL) is introduced in the third part. The estimation for bearing RUL is based on the Mahalanobis distance according to the Minimum quantization error (MQE) from the SOM neuron model. The proposed intelligent diagnosis technique is validated using the data sets from NASA, PHM and experiments. Results show that the bearing healthy state can be assessed by the proposed SKE with a performance better than SK.. It is worth of noting that the prior knowledge of the bearing type is not required whenconducting the rolling bearing healthy assessment using SOM neuron model with SKE as the feature.
Δημήτριος, Ρούλιας. "Methodologies for remaining useful life estimation with multiple sensors in rotating machinery." Thesis, 2014. http://hdl.handle.net/10889/8258.
Full textΗ παρούσα εργασία εστιάζεται στην ανάπτυξη μεθοδολογιών πρόβλεψης τελικής αστοχίας σε περιστρεφόμενα συστήματα με χρήση πολλαπλών αισθητήρων και μεθόδων μηχανικής μάθησης και επεξεργασίας σήματος. Το κίνητρο προήλθε από το κενό που υπάρχει στη βιβλιογραφία όσον αφορά την προγνωστική σε κιβώτια ταχυτήτων. Η προγνωστική σε έδρανα έχει μεν μελετηθεί αλλά σε μικρό βαθμό και η παρούσα εργασία έρχεται να συμβάλλει και σε αυτό τον τομέα. Στα πλαίσια αυτής της εργασίας εκπονήθηκε ένας αριθμός πειραμάτων κόπωσης κιβωτίων ταχυτήτων. Η μελέτη επεκτάθηκε πέραν της παρακολούθησης κατάστασης με τη μέθοδο των κραδασμών και συγκεκριμένα μελετήθηκαν καταγραφές σωματιδίων σιδήρου στο λιπαντικό (ODM) καθώς και Ακουστική Εκπομπής (AE). Η μέθοδος ΑΕ ευρέθη πιο στενά συσχετισμένη με τη σταδιακή υποβάθμιση της ακεραιότητας του κιβωτίου ταχυτήτων σε σχέση με τις καταγραφές κραδασμών. Επίσης με βάση τις καταγραφές του αισθητήρα σωματιδίων σιδήρου διακρίθηκαν δύο στάδια υποβάθμισης i) μια γραμμική περιοχή με σχεδόν σταθερό ρυθμό απελευθέρωσης υλικού από την επιφάνεια των δοντιών και ii) μια σύντομη αλλά έντονα μη γραμμική αύξηση στο ρυθμό αυτό πολύ κοντά στο τέλος της λειτουργίας του κιβωτίου. Tα πολύωρα πειράματα κόπωσης σε γρανάζια είναι πολύ απαιτητικά. Για να παρακαμφθεί αυτή η δυσκολία αναπτύχθηκε ένα φαινομενολογικό μοντέλο για αναπαραγωγή χρονοσειρών που ομοιάζουν σε καταγραφές γραναζιών σε κόπωση. Το μοντέλο αυτό στηρίχθηκε σε πραγματικά πειράματα κόπωσης. Έτσι έγινε δυνατό να εξεταστούν και να συγκριθούν ένας αριθμός μεθοδολογιών εκτίμησης εναπομένουσας ζωής και συγκεκριμένα i) Proportional Hazards Model (PHM), ii) ε- Support Vector Regression ε-SVR και iii) Exponential extrapolation βασισμένο σε μια διαδικασία bootstrap sampling. Στην παρούσα μελέτη προτείνεται ένα σύνολο παραμέτρων προερχόμενο από το πεδίο της συχνότητας, του χρόνου και κυματοπακέτων. Αυτό, συνδυαζόμενο με μια διαδικασία σύμπτυξης δεδομένων (ανάλυση σε πρωταρχικές και ανεξάρτητες συνιστώσες) αξιοποιείται για πρόγνωση σε γρανάζια σε κόπωση. Η τεχνική ανεξάρτητων συνιστωσών προτείνεται σαν προτιμότερη από τη σκοπιά της προγνωστικής καθώς βελτιώνει την εκτίμηση της εναπομένουσας ζωής. Η εργασία επεκτάθηκε και σε έδρανα κύλισης. Προτάθηκε μια διαδικασία wavelet denoising η οποία ενισχύει τόσο τη διαγνωστική όσο και την προγνωστική δυνατότητα του αισθητήρα κραδασμών. Τέλος, η σημασία της εξαγωγής παραμέτρων υπογραμμίζεται και στην περίπτωση της προγνωστικής σε έδρανα. Συνδυάζοντας πολλαπλές παραμέτρους και αισθητήρες κραδασμών μαζί με ένα μοντέλο ε-SVR παρέχεται ένα ολοκληρωμένο μοντέλο πιθανοτικής εκτίμησης εναπομένουσας ζωής σε έδρανα κύλισης ακόμα και σε περιπτώσεις που η τιμή RMS των κραδασμών δεν παρέχει πληροφορία.
Lee, Juei-En, and 李睿恩. "Time Series Multi-Channel Convolutional Neural Network for Bearing Remaining Useful Life Estimation." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/976wt5.
Full text國立中央大學
資訊工程學系
106
Today's global manufacturing industry is committed to transforming traditional factories into industrial 4.0 smart factories through technologies such as Industrial Internet of Things (IIoT), big data analysis, and Cyber Physical System (CPS). The Prognostics and Health Management (PHM) system is one of important systems of the smart factory. Through the collection and analysis of big data, the system can allow users to monitor machinery operation states and health condition in a timely manner so that proper countermeasures can be taken as soon as possible to mitigate potential problems. This study focuses on developing the Remaining Useful Life (RUL) estimation method for the smart factory PHM system. The method can be used to avoid sudden component/machine failures, which may lead to a huge loss. In this study, we propose a deep learning method using the Time Series Multi-Channel Convolutional Neural Network (TSMC-CNN) architecture for the RUL estimation. Unlike the traditional CNN architecture that is mainly used for image recognition or image processing, the TSMC-CNN architecture divides time-series data into multiple folds and superimpose them altogether to extract relationship between data pieces that are far apart for accurately predicting the RUL of machine/component. The bearing operation data collected by the French research institute FEMTO-ST on the PRONOSTIA experimental platform is used to evaluate the accuracy of the proposed method. The evaluation results are compared with those of the DNN, GBDT, SVM, BP, Gaussian regression, and Bayesian Ridge methods proposed in the literature. The comparisons show that the proposed method is the best in the aspects of both the root mean squared error (RMSE) and the mean absolute error (MAE).
Yen, Han Chiang, and 江衍涵. "Technique Developments of Estimations of Cutting Forces and Tool Remaining Useful Life." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/8syafw.
Full text國立中正大學
機械工程系研究所
106
Two techniques regarding of machining based on the vibration signal are proposed. The first one is an indirect cutting force estimation and the second is an estimation of cutting tool remaining life . For cutting force estimation, a frequency transfer function between the force acting on the cutting tool tip and the acceleration on the spindle is determined firstly using experimental modal analysis (EMA). With this transfer function, the cutting force is then obtained during the machining by measuring the spindle acceleration. Experimental results show that the cutting force determined using the proposed indirection measurement agrees well with those measured using the dynamometer at low spindle speeds; however, the discrepancy increases at high spindle speed, e.g. above 6000 RPM. For the tool remaining life estimation, an indirect detection of tool wear using features extracted from vibration signal is proposed. The effectiveness and the contribution in tool wear estimation from various features extracted from the vibration and cutting force are compared using the method of Reverse Principal Components (RPCA). Then the self-organizing maps (SOM) is adopted for estimating the tool wear, and furthermore the tool useful remaining life (RUL). Experimental results show that the discrepancy in the tool wear estimation using the proposed method is less than 10% as compared with that measured directly by photos.
Fornlöf, Veronica. "Improved remaining useful life estimations for on-condition parts in aircraft engines." Licentiate thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-12653.
Full textHuang, Ke-Jun, and 黃科竣. "UKF-based Estimation of the Ultracapacitor State of Charge (SOC), Temperature and Remaining Useful Life (RUL)." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/67319243910310104701.
Full text國立臺灣科技大學
機械工程系
104
Simultaneous estimation of the state of charge (SOC), temperature and remaining useful life (RUL) of ultracapacitors is achieved in this thesis by applying the unscented Kalman filter (UKF). In implementing the UKF, two sets of ultracapacitor model are used, including one with the voltage and temperature effects and the other with the aging effect. The proposed estimation strategy is validated via experiments in various thermal conditions, charge/discharge cycles and aging processes. The results indicate that the UKF is more effective than the extended Kalman filter (EKF) in dealing with the nonlinearity in the system.
Hsu, Che-Sheng, and 許哲昇. "Long Short-Term Memory Deep Learning for Estimating Machinery Remaining Useful Life." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/71180977514395435766.
Full text國立中央大學
資訊工程學系
105
In recent years, it is a worldwide goal to develop smart factories by integrating the artificial intelligence, Internet of Things and cloud computing technologies. Smart factories can achieve higher yield rates and better quality; they can also mitigate the problems of labor shortage and react properly to the dynamically changing of market. This thesis focuses on Remaining Useful Life (RUL) estimation, which is a part of the prognosis application. By accurate RUL estimation, machines or components can be repaired or replaced before they malfunction to cause the production line or the system to stop unexpectedly. This can reduce the damage caused by an unexpected shutdown, and reduce the cost of management. In this paper, we propose a deep learning method to construct deep neural networks for the RUL estimation. The proposed method is based on the Long Short-Term Memory (LSTM) model, which belongs to the category of Recurrent Neural Networks (RNNs). LSTM is more suitable for dealing with long-sequenced data of time series than general RNNs, and it can effectively extract and memorize significant relationship of data items which are apart from one another in the time series. It is believed that the memory characteristic in LSTM is useful for predicting RUL. The NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set of hundreds of propulsion engines is applied to the proposed method for performance evaluation. The evaluation results are compared with those of the MLP, SVR, RVR and CNN methods proposed in the literature. The comparisons indicate that the proposed method is the best among all compared methods in terms of the Root Mean Squared Error (RMSE) and the Scoring Function. At the end of this thesis, we describe some observations and possible application scenarios of the proposed method.