Academic literature on the topic 'Remote sensing Image processing Remote sensing Remote sensing Computer algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Remote sensing Image processing Remote sensing Remote sensing Computer algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Remote sensing Image processing Remote sensing Remote sensing Computer algorithms"
Li, Hongchao, and Fang Wu. "Conversion and Visualization of Remote Sensing Image Data in CAD." Computer-Aided Design and Applications 18, S3 (October 20, 2020): 82–94. http://dx.doi.org/10.14733/cadaps.2021.s3.82-94.
Full textZhu, Zhiqin, Yaqin Luo, Hongyan Wei, Yong Li, Guanqiu Qi, Neal Mazur, Yuanyuan Li, and Penglong Li. "Atmospheric Light Estimation Based Remote Sensing Image Dehazing." Remote Sensing 13, no. 13 (June 22, 2021): 2432. http://dx.doi.org/10.3390/rs13132432.
Full textLi, J., J. Sheng, Y. Chen, L. Ke, N. Yao, Z. Miao, X. Zeng, L. Hu, and Q. Wang. "A WEB-BASED LEARNING ENVIRONMENT OF REMOTE SENSING EXPERIMENTAL CLASS WITH PYTHON." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B5-2020 (August 24, 2020): 57–61. http://dx.doi.org/10.5194/isprs-archives-xliii-b5-2020-57-2020.
Full textJin, Liang, and Guodong Liu. "An Approach on Image Processing of Deep Learning Based on Improved SSD." Symmetry 13, no. 3 (March 17, 2021): 495. http://dx.doi.org/10.3390/sym13030495.
Full textTripathi, Rakesh, and Neelesh Gupta. "A Review on Segmentation Techniques in Large-Scale Remote Sensing Images." SMART MOVES JOURNAL IJOSCIENCE 4, no. 4 (April 20, 2018): 7. http://dx.doi.org/10.24113/ijoscience.v4i4.143.
Full textZou, Quan, Guoqing Li, and Wenyang Yu. "Cloud Computing Based on Computational Characteristics for Disaster Monitoring." Applied Sciences 10, no. 19 (September 24, 2020): 6676. http://dx.doi.org/10.3390/app10196676.
Full textZhao, Ying, and Ye Cai Guo. "Remote Sensing Image Enhancement Based on Wavelet Transformation." Applied Mechanics and Materials 198-199 (September 2012): 223–26. http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.223.
Full textXu, R. G., G. Qiao, Y. J. Wu, and Y. J. Cao. "EXTRACTION OF RIVERS AND LAKES ON TIBETAN PLATEAU BASED ON GOOGLE EARTH ENGINE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13 (June 5, 2019): 1797–801. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w13-1797-2019.
Full textWang, Sen, Xiaoming Sun, Pengfei Liu, Kaige Xu, Weifeng Zhang, and Chenxu Wu. "Research on Remote Sensing Image Matching with Special Texture Background." Symmetry 13, no. 8 (July 29, 2021): 1380. http://dx.doi.org/10.3390/sym13081380.
Full textKaur, Sumit. "Deep Learning Based High-Resolution Remote Sensing Image classification." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 10 (October 30, 2017): 22. http://dx.doi.org/10.23956/ijarcsse.v7i10.384.
Full textDissertations / Theses on the topic "Remote sensing Image processing Remote sensing Remote sensing Computer algorithms"
Cisz, Adam. "Performance comparison of hyperspectral target detection algorithms /." Online version of thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/3020.
Full textWang, Zhen. "Modeling wildland fire radiance in synthetic remote sensing scenes /." Online version of thesis, 2007. http://hdl.handle.net/1850/5787.
Full textIentilucci, Emmett J. "Hyperspectral sub-pixel target detection using hybrid algorithms and physics based modeling /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1185.
Full textDoster, Timothy J. "Mathematical methods for anomaly grouping in hyperspectral images /." Online version of thesis, 2009. http://hdl.handle.net/1850/11575.
Full textSchuetter, Jared Michael. "Cairn Detection in Southern Arabia Using a Supervised Automatic Detection Algorithm and Multiple Sample Data Spectroscopic Clustering." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269567071.
Full textShah, Vijay Pravin. "A wavelet-based approach to primitive feature extraction, region-based segmentation, and identification for image information mining." Diss., Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-07062007-134150.
Full textStory, Michael Haun. "Comparison of accuracy and efficiency of five digital image classification algorithms." Thesis, This resource online, 1987. http://scholar.lib.vt.edu/theses/available/etd-04122010-083611/.
Full textLi, Feng Engineering & Information Technology Australian Defence Force Academy UNSW. "Development of super resolution techniques for finer scale remote sensing image mapping." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/44098.
Full textVan, der Westhuizen Lynette. "Concise analysis and testing of a software model of a satellite remote sensing system used for image generation." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96029.
Full textENGLISH ABSTRACT: The capability of simulating the output image of earth observation satellite sensors is of great value, as it reduces the dependency on extensive field tests when developing, testing and calibrating satellite sensors. The aim of this study was to develop a software model to simulate the data acquisition process used by passive remote sensing satellites for the purpose of image generation. To design the software model, a comprehensive study was done of a physical real world satellite remote sensing system in order to identify and analyse the different elements of the data acquisition process. The different elements were identified as being the target, the atmosphere, the sensor and satellite, and radiation. These elements and a signature rendering equation are used to model the target-atmosphere-sensor relationship of the data acquisition process. The signature rendering equation is a mathematical model of the different solar and self-emitted thermal radiance paths that contribute to the radiance reaching the sensor. It is proposed that the software model be implemented as an additional space remote sensing application in the Optronics Sensor Simulator (OSSIM) simulation environment. The OSSIM environment provides the infrastructure and key capabilities upon which this specialist work builds. OSSIM includes a staring array sensor model, which was adapted and expanded in this study to operate as a generic satellite sensor. The OSSIM signature rendering equation was found to include all the necessary terms required to model the at-sensor radiance for a satellite sensor with the exception of an adjacency effect term. The equation was expanded in this study to include a term to describe the in-field-of-view adjacency effect due to aerosol scattering. This effect was modelled as a constant value over the sensor field of view. Models were designed to simulate across-track scanning mirrors, the satellite orbit trajectory and basic image processing for geometric discontinuities. Testing of the software model showed that all functions operated correctly within the set operating conditions and that the in-field-of-view adjacency effect can be modelled effectively by a constant value over the sensor field of view. It was concluded that the satellite remote sensing software model designed in this study accurately simulates the key features of the real world system and provides a concise and sound framework on which future functionality can be expanded.
AFRIKAANSE OPSOMMING: Dit is nuttig om ’n sagteware program te besit wat die gegenereerde beelde van ’n satellietsensor vir aarde-waarneming kan naboots. So ’n sagteware program sal die afhanklikheid van breedvoerige veldwerktoetse verminder gedurende die ontwerp, toetsing en kalibrasie fases van die ontwikkeling van ’n satellietsensor. Die doel van hierdie studie was om ’n sagteware model te ontwerp wat die dataverwerwingsproses van ’n passiewe satelliet afstandswaarnemingstelsel kan naboots, met die doel om beelde te genereer. Om die sagteware model te ontwerp het ’n omvattende studie van ’n fisiese regte wêreld satelliet afstandswaarnemingstelsel geverg, om die verskillende elemente van die dataverwerwingsproses te identifiseer en te analiseer. Die verskillende elemente is geïdentifiseer as die teiken, die atmosfeer, die sensor en satelliet, en vloed. Hierdie elemente, tesame met ’n duimdrukvergelyking, is gebruik om die teiken-atmosfeer-sensor verhouding van die dataverwerwingsproses te modelleer. Die duimdrukvergelyking is ’n wiskundige model van die verskillende voortplantingspaaie van gereflekteerde sonvloed en self-stralende termiese vloed wat bydra tot die totale vloed wat die sensor bereik. Dit is voorgestel dat die sagteware model as ’n addisionele ruimte afstandswaarnemingtoepassing in die ‘Optronics sensor Simulator’ (OSSIM) simulasie-omgewing geïmplementeer word. Die OSSIM simulasie-omgewing voorsien die nodige infrastruktuur en belangrike funksies waarop hierdie spesialis werk gebou kan word. OSSIM het ’n starende-skikking sensor model wat in hierdie studie aangepas is en uitgebrei is om as ’n generiese satellietsensor te funksioneer. Die OSSIM duimdrukvergelyking bevat al die nodige radiometriese terme, behalwe ’n nabyheids-verstrooiing term, om die vloed by die satellietsensor te modeleer. Die duimdrukvergelyking is uitgebrei in hierdie studie om ’n term in te sluit wat die verstrooiing van vloed vanaf naby-geleë voorwerpe, as gevolg van aerosol verstrooiing, kan beskryf. Die nabyheids-verstrooiing is gemodeleer as ’n konstante waarde oor die sigveld van die sensor. Modelle is ontwerp om die beweging van oor-baan skandering-spieëls en die satelliet wentelbaan trajek te bereken. ’n Basiese beeldverwerkings model is ook ontwerp om diskontinuïteite in geometriese vorms in die sensor beelde reg te stel. Toetsing van die sagteware model het gewys dat al die funksies korrek gefunksioneer het binne die limiete van die vasgestelde operasionele voorwaardes. Die toets resultate het ook bewys dat die in-sig-veld nabyheids-verstrooiing akkuraat gemodeleer kan word as ’n konstante waarde oor die sensor sigveld. Daar is tot die gevolgtrekking gekom dat die satelliet afstandswaarneming sagteware model wat in hierdie studie ontwerp is al die belangrikste kenmerke van die werklike wêreld stelsel kan simuleer. Die model vorm ’n beknopte en stewige raamwerk waarop toekomstige werk uitgebrei kan word.
Lavalle, Marco. "Full and Compact Polarimetric Radar Interferometry for Vegetation Remote Sensing." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00480972.
Full textBooks on the topic "Remote sensing Image processing Remote sensing Remote sensing Computer algorithms"
Richards, John A. Remote Sensing Digital Image Analysis: An Introduction. 5th ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textMcClain, C. R. An analysis of GAC sampling algorithms: A case study. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1992.
Find full textCem, Ünsalan, and SpringerLink (Online service), eds. Two-Dimensional Change Detection Methods: Remote Sensing Applications. London: Springer London, 2012.
Find full textLasaponara, Rosa. Satellite Remote Sensing: A New Tool for Archaeology. Dordrecht: Springer Netherlands, 2012.
Find full textMagaly, Koch, ed. Computer processing of remotely-sensed images: An introduction. 4th ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Find full textWatson, Kenneth. A 2D FFT filtering program for image processing with examples. [Denver, CO]: U.S. Dept. of the Interior, Geological Survey, 1992.
Find full textImage analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textCanty, Morton John. Image analysis, classification, and change detection in remote sensing: With algorithms for ENVI/IDL. 2nd ed. Boca Raton: Taylor & Francis, 2010.
Find full textBook chapters on the topic "Remote sensing Image processing Remote sensing Remote sensing Computer algorithms"
Ling, Han, Tao Fada, and Li Minglu. "Design and Implementation of the Image Processing Algorithm Framework for Remote Sensing." In Communications in Computer and Information Science, 479–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27452-7_65.
Full textMa, Zhiqiang, and Wanwu Guo. "Remote Sensing Image Processing Using MCDF." In Lecture Notes in Computer Science, 454–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30133-2_59.
Full textSawant, Neela, Sharat Chandran, and B. Krishna Mohan. "Retrieving Images for Remote Sensing Applications." In Computer Vision, Graphics and Image Processing, 849–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_76.
Full textUma Shankar, B., Saroj K. Meher, Ashish Ghosh, and Lorenzo Bruzzone. "Remote Sensing Image Classification: A Neuro-fuzzy MCS Approach." In Computer Vision, Graphics and Image Processing, 128–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_12.
Full textJiang, Chao, Ze-xun Geng, Xiao-feng Wei, and Chen Shen. "Research on Networked Integration Technology of Remote Sensing Image Processing." In Communications in Computer and Information Science, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34595-1_1.
Full textWang, Xiaoyue, Zhenhua Li, and Song Gao. "Parallel Remote Sensing Image Processing: Taking Image Classification as an Example." In Communications in Computer and Information Science, 159–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34289-9_19.
Full textRamos-Michel, Alfonso, Marco Pérez-Cisneros, Erik Cuevas, and Daniel Zaldivar. "A Survey on Image Processing for Hyperspectral and Remote Sensing Images." In Applications of Hybrid Metaheuristic Algorithms for Image Processing, 27–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40977-7_2.
Full textWilkinson, Graeme G. "Recent Developments in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques." In Machine Vision and Advanced Image Processing in Remote Sensing, 5–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60105-7_1.
Full textNalawade, Dhananjay B., Mahesh M. Solankar, Rupali R. Surase, Amarsinh B. Varpe, Amol D. Vibhute, Rajesh K. Dhumal, and Karbhari Kale. "Hyperspectral Remote Sensing Image Analysis with SMACC and PPI Algorithms for Endmember Extraction." In Communications in Computer and Information Science, 319–28. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9181-1_28.
Full textSynthiya Vinothini, D., B. Sathyabama, and S. Karthikeyan. "Super Resolution Mapping of Trees for Urban Forest Monitoring in Madurai City Using Remote Sensing." In Computer Vision, Graphics, and Image Processing, 88–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68124-5_8.
Full textConference papers on the topic "Remote sensing Image processing Remote sensing Remote sensing Computer algorithms"
"REMOTE SENSING CLASSIFICATION USING MULTI-SENSOR SUPER-RESOLUTION ALGORITHM." In 14th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing. IADIS Press, 2020. http://dx.doi.org/10.33965/cgv2020_202011l016.
Full textВасин, Дмитрий, and Dmitriy Vasin. "Regular methods for coding of raster images of remote sensing of Earth." In 29th International Conference on Computer Graphics, Image Processing and Computer Vision, Visualization Systems and the Virtual Environment GraphiCon'2019. Bryansk State Technical University, 2019. http://dx.doi.org/10.30987/graphicon-2019-1-152-158.
Full textHarding, Patrick J., Gordon Arthur, and Neil M. Robertson. "Metrics for measuring the impact of image processing algorithms on background statistics." In SPIE Remote Sensing, edited by Lorenzo Bruzzone, Claudia Notarnicola, and Francesco Posa. SPIE, 2008. http://dx.doi.org/10.1117/12.800308.
Full textBi, Siwen, Hao Chen, Yuxian Ke, Siwei Rao, and Jiaying Liu. "Processing algorithms for quantum remote sensing image data." In Infrared Remote Sensing and Instrumentation XXVII, edited by Marija Strojnik and Gabriele E. Arnold. SPIE, 2019. http://dx.doi.org/10.1117/12.2528307.
Full textFonseca, Leila Maria Gar, Laercio Massaru Namikawa, and Emiliano Ferreira Castejon. "Digital Image Processing in Remote Sensing." In 2009 Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI). IEEE, 2009. http://dx.doi.org/10.1109/sibgrapi-tutorials.2009.13.
Full textTusa, Laura, Mahdi Khodadadzadeh, I. Cecilia Contreras Acosta, and Richard Gloaguen. "Subspace clustering algorithms for mineral mapping." In Image and Signal Processing for Remote Sensing, edited by Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE, 2018. http://dx.doi.org/10.1117/12.2500080.
Full textPesántez-Cobos, Paúl, Francisco Alonso-Sarría, and Fulgencio Cánovas-García. "Implementing and validating of pan-sharpening algorithms in open-source software." In Image and Signal Processing for Remote Sensing, edited by Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE, 2017. http://dx.doi.org/10.1117/12.2277543.
Full textLi, Feng, Lei Xin, Jie Fu, Puming Huang, and Yang Liu. "High efficient optical remote sensing images acquisition for nanosatellite reconstruction algorithms." In Image and Signal Processing for Remote Sensing, edited by Lorenzo Bruzzone, Francesca Bovolo, and Jon Atli Benediktsson. SPIE, 2017. http://dx.doi.org/10.1117/12.2278180.
Full textCaves, R. G. "Multi-channel SAR segmentation: algorithms and applications." In IEE Colloquium on Image Processing for Remote Sensing. IEE, 1996. http://dx.doi.org/10.1049/ic:19960156.
Full textPlaza, Antonio, David Valencia, Javier Plaza, Juan Sanchez-Testal, Sergio Munoz, and Soraya Blazquez. "Parallel Implementation of Hyperspectral Image Processing Algorithms." In 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.242.
Full text