Dissertations / Theses on the topic 'Remote sensing Image processing Remote sensing Remote sensing Computer algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Remote sensing Image processing Remote sensing Remote sensing Computer algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cisz, Adam. "Performance comparison of hyperspectral target detection algorithms /." Online version of thesis, 2006. https://ritdml.rit.edu/dspace/handle/1850/3020.
Full textWang, Zhen. "Modeling wildland fire radiance in synthetic remote sensing scenes /." Online version of thesis, 2007. http://hdl.handle.net/1850/5787.
Full textIentilucci, Emmett J. "Hyperspectral sub-pixel target detection using hybrid algorithms and physics based modeling /." Link to online version, 2005. https://ritdml.rit.edu/dspace/handle/1850/1185.
Full textDoster, Timothy J. "Mathematical methods for anomaly grouping in hyperspectral images /." Online version of thesis, 2009. http://hdl.handle.net/1850/11575.
Full textSchuetter, Jared Michael. "Cairn Detection in Southern Arabia Using a Supervised Automatic Detection Algorithm and Multiple Sample Data Spectroscopic Clustering." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1269567071.
Full textShah, Vijay Pravin. "A wavelet-based approach to primitive feature extraction, region-based segmentation, and identification for image information mining." Diss., Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-07062007-134150.
Full textStory, Michael Haun. "Comparison of accuracy and efficiency of five digital image classification algorithms." Thesis, This resource online, 1987. http://scholar.lib.vt.edu/theses/available/etd-04122010-083611/.
Full textLi, Feng Engineering & Information Technology Australian Defence Force Academy UNSW. "Development of super resolution techniques for finer scale remote sensing image mapping." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/44098.
Full textVan, der Westhuizen Lynette. "Concise analysis and testing of a software model of a satellite remote sensing system used for image generation." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96029.
Full textENGLISH ABSTRACT: The capability of simulating the output image of earth observation satellite sensors is of great value, as it reduces the dependency on extensive field tests when developing, testing and calibrating satellite sensors. The aim of this study was to develop a software model to simulate the data acquisition process used by passive remote sensing satellites for the purpose of image generation. To design the software model, a comprehensive study was done of a physical real world satellite remote sensing system in order to identify and analyse the different elements of the data acquisition process. The different elements were identified as being the target, the atmosphere, the sensor and satellite, and radiation. These elements and a signature rendering equation are used to model the target-atmosphere-sensor relationship of the data acquisition process. The signature rendering equation is a mathematical model of the different solar and self-emitted thermal radiance paths that contribute to the radiance reaching the sensor. It is proposed that the software model be implemented as an additional space remote sensing application in the Optronics Sensor Simulator (OSSIM) simulation environment. The OSSIM environment provides the infrastructure and key capabilities upon which this specialist work builds. OSSIM includes a staring array sensor model, which was adapted and expanded in this study to operate as a generic satellite sensor. The OSSIM signature rendering equation was found to include all the necessary terms required to model the at-sensor radiance for a satellite sensor with the exception of an adjacency effect term. The equation was expanded in this study to include a term to describe the in-field-of-view adjacency effect due to aerosol scattering. This effect was modelled as a constant value over the sensor field of view. Models were designed to simulate across-track scanning mirrors, the satellite orbit trajectory and basic image processing for geometric discontinuities. Testing of the software model showed that all functions operated correctly within the set operating conditions and that the in-field-of-view adjacency effect can be modelled effectively by a constant value over the sensor field of view. It was concluded that the satellite remote sensing software model designed in this study accurately simulates the key features of the real world system and provides a concise and sound framework on which future functionality can be expanded.
AFRIKAANSE OPSOMMING: Dit is nuttig om ’n sagteware program te besit wat die gegenereerde beelde van ’n satellietsensor vir aarde-waarneming kan naboots. So ’n sagteware program sal die afhanklikheid van breedvoerige veldwerktoetse verminder gedurende die ontwerp, toetsing en kalibrasie fases van die ontwikkeling van ’n satellietsensor. Die doel van hierdie studie was om ’n sagteware model te ontwerp wat die dataverwerwingsproses van ’n passiewe satelliet afstandswaarnemingstelsel kan naboots, met die doel om beelde te genereer. Om die sagteware model te ontwerp het ’n omvattende studie van ’n fisiese regte wêreld satelliet afstandswaarnemingstelsel geverg, om die verskillende elemente van die dataverwerwingsproses te identifiseer en te analiseer. Die verskillende elemente is geïdentifiseer as die teiken, die atmosfeer, die sensor en satelliet, en vloed. Hierdie elemente, tesame met ’n duimdrukvergelyking, is gebruik om die teiken-atmosfeer-sensor verhouding van die dataverwerwingsproses te modelleer. Die duimdrukvergelyking is ’n wiskundige model van die verskillende voortplantingspaaie van gereflekteerde sonvloed en self-stralende termiese vloed wat bydra tot die totale vloed wat die sensor bereik. Dit is voorgestel dat die sagteware model as ’n addisionele ruimte afstandswaarnemingtoepassing in die ‘Optronics sensor Simulator’ (OSSIM) simulasie-omgewing geïmplementeer word. Die OSSIM simulasie-omgewing voorsien die nodige infrastruktuur en belangrike funksies waarop hierdie spesialis werk gebou kan word. OSSIM het ’n starende-skikking sensor model wat in hierdie studie aangepas is en uitgebrei is om as ’n generiese satellietsensor te funksioneer. Die OSSIM duimdrukvergelyking bevat al die nodige radiometriese terme, behalwe ’n nabyheids-verstrooiing term, om die vloed by die satellietsensor te modeleer. Die duimdrukvergelyking is uitgebrei in hierdie studie om ’n term in te sluit wat die verstrooiing van vloed vanaf naby-geleë voorwerpe, as gevolg van aerosol verstrooiing, kan beskryf. Die nabyheids-verstrooiing is gemodeleer as ’n konstante waarde oor die sigveld van die sensor. Modelle is ontwerp om die beweging van oor-baan skandering-spieëls en die satelliet wentelbaan trajek te bereken. ’n Basiese beeldverwerkings model is ook ontwerp om diskontinuïteite in geometriese vorms in die sensor beelde reg te stel. Toetsing van die sagteware model het gewys dat al die funksies korrek gefunksioneer het binne die limiete van die vasgestelde operasionele voorwaardes. Die toets resultate het ook bewys dat die in-sig-veld nabyheids-verstrooiing akkuraat gemodeleer kan word as ’n konstante waarde oor die sensor sigveld. Daar is tot die gevolgtrekking gekom dat die satelliet afstandswaarneming sagteware model wat in hierdie studie ontwerp is al die belangrikste kenmerke van die werklike wêreld stelsel kan simuleer. Die model vorm ’n beknopte en stewige raamwerk waarop toekomstige werk uitgebrei kan word.
Lavalle, Marco. "Full and Compact Polarimetric Radar Interferometry for Vegetation Remote Sensing." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00480972.
Full textLao, Yin, and 劉然. "Image matching of running vehicles." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B30278806.
Full textO'Donnell, Erin. "Detection and identification of effluent gases using invariant hyperspectral algorithms /." Link to online verson, 2005. https://ritdml.rit.edu/dspace/handle/1850/1124.
Full textKinda, Bazile. "Acoustic remote sensing of Arctic Sea Ice from long term soundscape measurements." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00940393.
Full textJonsson, Patrik. "Surface Status Classification, Utilizing Image Sensor Technology and Computer Models." Doctoral thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-24828.
Full textLloyd, Timothy Brian. "Surface extraction from coordinate measurement data to facilitate dimensional inspection." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15815.
Full textWolters, Dustin Joseph. "Assessment of Corn Plant Population at Emergence from Processed Color Aerial Imagery." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437666741.
Full textGallego, Bonet Guillermo. "Variational image processing algorithms for the stereoscopic space-time reconstruction of water waves." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39480.
Full textCai, Shangshu. "Hyperspectral image visualization using double and multiple layers." Diss., Mississippi State : Mississippi State University, 2009. http://library.msstate.edu/etd/show.asp?etd=etd-12082008-112300.
Full textShor, Eric H. "3-D longwave infrared synthetic scene simulation /." Online version of thesis, 1990. http://hdl.handle.net/1850/11361.
Full textKidane, Dawit K. "Rule-based land cover classification model : expert system integration of image and non-image spatial data." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50445.
Full textENGLISH ABSTRACT: Remote sensing and image processing tools provide speedy and up-to-date information on land resources. Although remote sensing is the most effective means of land cover and land use mapping, it is not without limitations. The accuracy of image analysis depends on a number of factors, of which the image classifier used is probably the most significant. It is noted that there is no perfect classifier, but some robust classifiers achieve higher accuracy results than others. For certain land cover/uses, discrimination based only on spectral properties is extremely difficult and often produces poor results. The use of ancillary data can improve the classification process. Some classifiers incorporate ancillary data before or after the classification process, which limits the full utilization of the information contained in the ancillary data. Expert classification, on the other hand, makes better use of ancillary data by incorporating data directly into the classification process. In this study an expert classification model was developed based on spatial operations designed to identify a specific land cover/use, by integrating both spectral and available ancillary data. Ancillary data were derived either from the spectral channels or from other spatial data sources such as DEM (Digital Elevation Model) and topographical maps. The model was developed in ERDAS Imagine image-processing software, using the expert engineer as a final integrator of the different constituent spatial operations. An attempt was made to identify the Level I land cover classes in the South African National Land Cover classification scheme hierarchy. Rules were determined on the basis of expert knowledge or statistical calculations of mean and variance on training samples. Although rules could be determined by using statistical applications, such as the classification analysis regression tree (CART), the absence of adequate and accurate training data for all land cover classes and the fact that all land cover classes do not require the same predictor variables makes this option less desirable. The result of the accuracy assessment showed that the overall classification accuracy was 84.3% and kappa statistics 0.829. Although this level of accuracy might be suitable for most applications, the model is flexible enough to be improved further.
AFRIKAANSE OPSOMMING: Afstandswaameming-en beeldverwerkingstegnieke kan akkurate informasie oorbodemhulpbronne weergee. Alhoewel afstandswaameming die mees effektiewe manier van grondbedekking en grondgebruikkartering is, is dit nie sonder beperkinge nie. Die akkuraatheid van beeldverwerking is afhanklik van verskeie faktore, waarvan die beeld klassifiseerder wat gebruik word, waarskynlik die belangrikste faktor is. Dit is welbekend dat daar geen perfekte klassifiseerder is nie, alhoewel sekere kragtige klassifiseerders hoër akkuraatheid as ander behaal. Vir sekere grondbedekking en -gebruike is uitkenning gebaseer op spektrale eienskappe uiters moeilik en dikwels word swak resultate behaal. Die gebruik van aanvullende data, kan die klassifikasieproses verbeter. Sommige klassifiseerders inkorporeer aanvullende data voor of na die klassifikasieproses, wat die volle aanwending van die informasie in die aanvullende data beperk. Deskundige klassifikasie, aan die ander kant, maak beter gebruik van aanvullende data deurdat dit data direk in die klassifikasieproses inkorporeer. Tydens hierdie studie is 'n deskundige klassifikasiemodel ontwikkel gebaseer op ruimtelike verwerkings, wat ontwerp is om spesifieke grondbedekking en -gebruike te identifiseer. Laasgenoemde is behaal deur beide spektrale en beskikbare aanvullende data te integreer. Aanvullende data is afgelei van, óf spektrale eienskappe, óf ander ruimtelike bronne soos 'n DEM (Digitale Elevasie Model) en topografiese kaarte. Die model is ontwikkel in ERDAS Imagine beeldverwerking sagteware, waar die 'expert engineer' as finale integreerder van die verskillende samestellende ruimtelike verwerkings gebruik is. 'n Poging is aangewend om die Klas I grondbedekkingklasse, in die Suid-Afrikaanse Nasionale Grondbedekking klassifikasiesisteem te identifiseer. Reëls is vasgestel aan die hand van deskundige begrippe of eenvoudige statistiese berekeninge van die gemiddelde en variansie van opleidingsdata. Alhoewel reëls met behulp van statistiese toepassings, soos die 'classification analysis regression tree (CART)' vasgestel kon word, maak die afwesigheid van genoegsame en akkurate opleidingsdata vir al die grondbedekkingsklasse hierdie opsie minder aantreklik. Bykomend tot laasgenoemde, vereis alle grondbedekkingsklasse nie dieselfde voorspellingsveranderlikes nie. Die resultaat van hierdie akkuraatheidsskatting toon dat die algehele klassifikasie-akkuraatheid 84.3% was en die kappa statistieke 0.829. Alhoewel hierdie vlak van akkuraatheid vir die meeste toepassings geskik is, is die model aanpasbaar genoeg om verder te verbeter.
Grant, Cameron S. "Incorporating Spatial Information into Gas Plume Detection in Hyperspectral Imagery." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/823.
Full textParshakov, Ilia. "Automatic class labeling of classified imagery using a hyperspectral library." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, c2012, 2012. http://hdl.handle.net/10133/3372.
Full textvii, 93 leaves : ill., maps (some col.) ; 29 cm
Santos, Jefersson Alex dos 1984. "Reconhecimento semi-automatico e vetorização de regiões em imagens de sensoriamento remoto." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276150.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-13T10:41:05Z (GMT). No. of bitstreams: 1 Santos_JeferssonAlexdos_M.pdf: 3412363 bytes, checksum: 9f3c3640964ef3c4b39b2ee532941a42 (MD5) Previous issue date: 2009
Resumo: O uso de imagens de sensoriamento remoto (ISRs) como fonte de informação em aplicações voltadas para o agro-negócio e bastante comum. Nessas aplicações, saber como é a ocupação espacial é fundamental. Entretanto, reconhecer e diferenciar regiões de culturas agrícolas em ISRs ainda não é uma tarefa trivial. Embora existam métodos automáticos propostos para isso, os usuários preferem muitas vezes fazer o reconhecimento manualmente. Isso acontece porque tais métodos normalmente são feitos para resolver problemas específicos, ou quando são de propósito geral, não produzem resultados satisfatórios fazendo com que, invariavelmente, o usuário tenha que revisar os resultados manualmente. A pesquisa realizada objetivou a especificação e implementação parcial de um sistema para o reconhecimento semi-automático e vetorização de regiões em imagens de sensoriamento remoto. Para isso, foi usada uma estratégia interativa, chamada realimentação de relevância, que se baseia no fato de o sistema de classificação poder aprender quais são as regiões de interesse utilizando indicações de relevância feitas pelo usuário do sistema ao longo de iterações. A idéia é utilizar descritores de imagens para codificar informações espectrais e de textura de partições das imagens e utilizar realimentação de relevância com Programação Genética (PG) para combinar as características dos descritores. PG é uma técnica de aprendizado de máquina baseada na teoria da evolução. As principais contribuições deste trabalho são: estudo comparativo de técnicas de vetorização de imagens; adaptação do modelo de recuperação de imagens por conteúdo proposto recentemente para realização de realimentação de relevância usando regiões de imagem; adaptação do modelo de realimentação de relevância para o reconhecimento de regiões em ISRs; implementação parcial de um sistema de reconhecimento semi-automático e vetorização de regiões em ISRs; proposta de metodologia de validação do sistema desenvolvido.
Abstract: The use of remote sensing images as a source of information in agrobusiness applications is very common. In these applications, it is fundamental to know how the space occupation is. However, the identification and recognition of crop regions in remote sensing images are not trivial tasks yet. Although there are automatic methods proposed to that, users prefer sometimes to identify regions manually. That happens because these methods are usually developed to solve specific problems, or, when they have a general purpose, they do not yield satisfying results. This work presents a semi-automatic method to vectorize regions from remote sensing images using relevance feedback based on genetic programming (GP). Relevance feedback is a technique used in content-based image retrieval (CBIR). Its objective is to agregate user preferences to the search process. The proposed solution consists in using image descriptors to encode texture and spectral features from the images, applying relevance feedback based on GP to combine these features with information obtained from the users interactions and, finally, segment the image. Finally, segmented image (raster) is converted into a vector representation. The main contributions of this work are: comparative study of image vectorization techniques; extension of a recently proposed relevance feedback approach for dealing with image regions; extension of the relevance feedback model for region recognition in remote sensing images; parcial implementation of the semi-automatic and vectorization system of remote sensing images regions; proposal a validation methodology.
Mestrado
Mestre em Ciência da Computação
De, Franchis Carlo. "Earth Observation and Stereo Vision." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN002/document.
Full textThis thesis deals with the problem of computing accurate digital elevationmodels of the Earth's surface from optical images taken by pushbroomobservation satellites. It takes advantage of the collaboration of thedefendant with CNES (the French Space Agency) on the development ofstereo vision tools for Pléiades, the first Earth observation satelliteproducing quasi simultaneous stereo pairs or triplets with small baseline.The first chapter describes a simple pushbroom camera model for observationsatellites orbiting around the Earth and addresses the correction of theacquisition geometry by involving extrinsic information. This chapter proposesa new algorithm to refine the orientation parameters from a set of groundcontrol points, applicable to all pushbroom satellites.With the goal of testing for satellite imaging the thriving exploration ofstereo matching by the computer vision community, the second chapter exploresthe adaptation of the theory of epipolar resampling to pushbroom images.Epipolar resampling is traditionally used in stereo to reduce the matchingcomputational cost, and permits to test for satellite imaging the mostcompetitive computer vision algorithms. The third chapter discusses the effectsof geometric calibration inaccuracies and proposes a method to cancel itsimpact on stereo matching.The fourth chapter analyzes and describes a detailed implementation of theSemi-Global Matching (SGM) algorithm, which is currently among the top-rankedstereo vision algorithms. Based on a recently proposed interpretation of SGM asa min-sum Belief Propagation algorithm, a variant is proposed that allows toreduce by a factor five the energy gap of SGM with respect to referencealgorithms for Markov Random Fields with truncated smoothness terms.By wrapping together the algorithmic blocks described in the previous chapters,the fifth chapter describes S2P, a complete stereo pipeline for producingdigital elevation models from satellite images. As an application, a landscapeevolution model is presented in the sixth chapter. The model is used tosimulate numerically the fine structure of the river networks on digitalelevation models obtained from Pléiades Earth observation images.The source code of the S2P stereo pipeline is distributed as open source. Toensure reproducibility, the algorithms implemented in each step of the S2Ppipeline are submitted to the IPOL journal, with detailed descriptions of thealgorithms, documented source codes and online demonstrations for each block ofthe pipeline
Patruno, Jolanda. "Polarimetric RADARSAT-2 and ALOS PALSAR multi-frequency analysis over the archaeological site of Gebel Barkal (Sudan)." Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01061287.
Full textDore, Nicole. "Polarimetric multi-incidence angle analysis over the archaeological site of Samarra by means of RADARSAT-2 and ALOS PALSAR satellites datasets." Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01060848.
Full textRomero, Adriana. "Assisting the training of deep neural networks with applications to computer vision." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/316577.
Full textKurtz, Camille. "Une approche collaborative segmentation - classification pour l'analyse descendante d'images multirésolutions." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00735217.
Full text(9187466), Bharath Kumar Comandur Jagannathan Raghunathan. "Semantic Labeling of Large Geographic Areas Using Multi-Date and Multi-View Satellite Images and Noisy OpenStreetMap Labels." Thesis, 2020.
Find full textUttam, Kumar *. "Algorithms For Geospatial Analysis Using Multi-Resolution Remote Sensing Data." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2280.
Full text"Acquisition and modeling of 3D irregular objects." Chinese University of Hong Kong, 1994. http://library.cuhk.edu.hk/record=b5888184.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1994.
Includes bibliographical references (leaves 127-131).
Abstract --- p.v
Acknowledgment --- p.vii
Chapter 1 --- Introduction --- p.1-8
Chapter 1.1 --- Overview --- p.2
Chapter 1.2 --- Survey --- p.4
Chapter 1.3 --- Objectives --- p.6
Chapter 1.4 --- Thesis Organization --- p.7
Chapter 2 --- Range Sensing --- p.9-30
Chapter 2.1 --- Alternative Approaches to Range Sensing --- p.9
Chapter 2.1.1 --- Size Constancy --- p.9
Chapter 2.1.2 --- Defocusing --- p.11
Chapter 2.1.3 --- Deconvolution --- p.14
Chapter 2.1.4 --- Binolcular Vision --- p.18
Chapter 2.1.5 --- Active Triangulation --- p.20
Chapter 2.1.6 --- Time-of-Flight --- p.22
Chapter 2.2 --- Transmitter and Detector in Active Sensing --- p.26
Chapter 2.2.1 --- Acoustics --- p.26
Chapter 2.2.2 --- Optics --- p.28
Chapter 2.2.3 --- Microwave --- p.29
Chapter 2.3 --- Conclusion --- p.29
Chapter 3 --- Scanning Mirror --- p.31-47
Chapter 3.1 --- Scanning Mechanisms --- p.31
Chapter 3.2 --- Advantages of Scanning Mirror --- p.32
Chapter 3.3 --- Feedback of Scanning Mirror --- p.33
Chapter 3.4 --- Scanning Mirror Controller --- p.35
Chapter 3.5 --- Point-to-Point Scanning --- p.39
Chapter 3.6 --- Line Scanning --- p.39
Chapter 3.7 --- Specifications and Measurements --- p.41
Chapter 4 --- The Rangefinder with Reflectance Sensing --- p.48-58
Chapter 4.1 --- Ambient Noises --- p.49
Chapter 4.2 --- Occlusion/Shadow --- p.49
Chapter 4.3 --- Accuracy and Precision --- p.50
Chapter 4.4 --- Optics --- p.53
Chapter 4.5 --- Range/Reflectance Crosstalk --- p.56
Chapter 4.6 --- Summary --- p.58
Chapter 5 --- Computer Generation of Range Map --- p.59-75
Chapter 5.1 --- Homogenous Transformation --- p.61
Chapter 5.2 --- From Global to Viewer Coordinate --- p.63
Chapter 5.3 --- Z-buffering --- p.55
Chapter 5.4 --- Generation of Range Map --- p.66
Chapter 5.5 --- Experimental Results --- p.68
Chapter 6 --- Characterization of Range Map --- p.76-90
Chapter 6.1 --- Mean and Gaussian Curvature --- p.76
Chapter 6.2 --- Methods of Curvature Generation --- p.78
Chapter 6.2.1 --- Convolution --- p.78
Chapter 6.2.2 --- Local Surface Patching --- p.81
Chapter 6.3 --- Feature Extraction --- p.84
Chapter 6.4 --- Conclusion --- p.85
Chapter 7 --- Merging Multiple Characteristic Views --- p.91-119
Chapter 7.1 --- Rigid Body Model --- p.91
Chapter 7.2 --- Sub-rigid Body Model --- p.94
Chapter 7.3 --- Probabilistic Relaxation Matching --- p.95
Chapter 7.4 --- Merging the Sub-rigid Body Model --- p.99
Chapter 7.5 --- Illustration --- p.101
Chapter 7.6 --- Merging Multiple Characteristic Views --- p.104
Chapter 7.7 --- Mislocation of Feature Extraction --- p.105
Chapter 7.7.1 --- The Transform Matrix for Perfect Matching --- p.106
Chapter 7.7.2 --- Introducing The Errors in Feature Set --- p.108
Chapter 7.8 --- Summary --- p.113
Chapter 8 --- Conclusion --- p.120-126
References --- p.127-131
Appendix A - Projection of Object --- p.A1-A2
Appendix B - Performance Analysis on Rangefinder System --- p.B1-B16
Appendix C - Matching of Two Characteristic views --- p.C1-C3
Fauvel, Mathieu. "Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data." Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00258717.
Full textzones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS).
Deux stratégies ont été proposées.
La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM)
non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale
et l'information spectrale extraites lors de la première phase.\\
La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification,
divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat
ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schém
a de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé
.
Les différents résultats sont fusionnés à l'aide d'opérateurs flous.
Les méthodes ont été validées sur des images réelles. Des
améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature.
Wiemker, Rafael. "The Color Constancy Problem in Multispectral Remote Sensing - On the Impact of Surface Orientation on Spectral Signatures." Phd thesis, 1997. http://tel.archives-ouvertes.fr/tel-00010773.
Full text"Monitoring Physiological Signals Using Camera." Doctoral diss., 2016. http://hdl.handle.net/2286/R.I.41236.
Full textDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2016
LORENZI, Luca. "Development of an Innovative System for the Reconstruction of New Generation Satellite Images." Phd thesis, 2012. http://tel.archives-ouvertes.fr/tel-00816978.
Full textMCQUAT, Gregory John. "Feature Extraction Workflows for Urban Mobile-Terrestrial LiDAR Data." Thesis, 2011. http://hdl.handle.net/1974/6530.
Full textThesis (Master, Geography) -- Queen's University, 2011-05-24 13:10:15.198
WANG, Bo. "Radar à synthèse d'ouverture polarimétrique pour la caractérisation de la surface de la mer et la détection de navire." Phd thesis, 2013. http://tel.archives-ouvertes.fr/tel-00979001.
Full text