Journal articles on the topic 'Renal Microperfusion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Renal Microperfusion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Burg, Maurice B. "Origins of Isolated Tubule Microperfusion Methodology." Physiology 3, no. 4 (1988): 176–80. http://dx.doi.org/10.1152/physiologyonline.1988.3.4.176.
Full textCHEN, Chun-guang, and Yi-ping WANG. "Magnesium lithospermate B ameliorates renal cortical microperfusion in rats1." Acta Pharmacologica Sinica 27, no. 2 (2006): 217–22. http://dx.doi.org/10.1111/j.1745-7254.2006.00225.x.
Full textOtt, Christian, Joanna M. Harazny, Axel Schmid, et al. "Retinal microperfusion after renal denervation in treatment-resistant hypertensive patients." Clinical Research in Cardiology 104, no. 9 (2015): 782–89. http://dx.doi.org/10.1007/s00392-015-0845-0.
Full textCapasso, Giovambattista, Caterina Saviano, Francesca Ciani, Florian Lang, Ferdinando Russo, and Natale G. De Santo. "A decrease in renal medullary tonicity stimulates anion transport in Henle’s loop of rat kidneys." American Journal of Physiology-Renal Physiology 274, no. 4 (1998): F693—F699. http://dx.doi.org/10.1152/ajprenal.1998.274.4.f693.
Full textRegus, Susanne, Felix Klingler, Werner Lang, et al. "Pilot study using intraoperative fluorescence angiography during arteriovenous hemodialysis access surgery." Journal of Vascular Access 20, no. 2 (2018): 175–83. http://dx.doi.org/10.1177/1129729818791989.
Full textDeng, Aihua, and Scott C. Thomson. "Renal NMDA receptors independently stimulate proximal reabsorption and glomerular filtration." American Journal of Physiology-Renal Physiology 296, no. 5 (2009): F976—F982. http://dx.doi.org/10.1152/ajprenal.90391.2008.
Full textWalter, S. J., D. G. Shirley, and R. J. Unwin. "Effect of vasopressin on renal lithium reabsorption: a micropuncture and microperfusion study." American Journal of Physiology-Renal Physiology 271, no. 1 (1996): F223—F229. http://dx.doi.org/10.1152/ajprenal.1996.271.1.f223.
Full textKirchner, K. A. "Increased loop chloride uptake precedes hypertension in Dahl salt-sensitive rats." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 262, no. 2 (1992): R263—R268. http://dx.doi.org/10.1152/ajpregu.1992.262.2.r263.
Full textFischer, Krisztina, F. Can Meral, Yongzhi Zhang, et al. "High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion." Kidney International 89, no. 6 (2016): 1388–98. http://dx.doi.org/10.1016/j.kint.2016.02.004.
Full textBank, N., H. S. Aynedjian, and B. F. Mutz. "Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis." American Journal of Physiology-Renal Physiology 250, no. 3 (1986): F476—F482. http://dx.doi.org/10.1152/ajprenal.1986.250.3.f476.
Full textLessa, Lucília M. A., Luciene R. Carraro-Lacroix, Renato O. Crajoinas, et al. "Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule." American Journal of Physiology-Renal Physiology 303, no. 10 (2012): F1399—F1408. http://dx.doi.org/10.1152/ajprenal.00385.2011.
Full textQuan, Albert, and Michel Baum. "Renal nerve stimulation augments effect of intraluminal angiotensin II on proximal tubule transport." American Journal of Physiology-Renal Physiology 282, no. 6 (2002): F1043—F1048. http://dx.doi.org/10.1152/ajprenal.00279.2001.
Full textWang, Tong, Hyacinth Sterling, Wei A. Shao, et al. "Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop of Henle." American Journal of Physiology-Renal Physiology 285, no. 3 (2003): F484—F490. http://dx.doi.org/10.1152/ajprenal.00135.2003.
Full textGong, Yongfeng, Nina Himmerkus, Abby Sunq, et al. "ILDR1 is important for paracellular water transport and urine concentration mechanism." Proceedings of the National Academy of Sciences 114, no. 20 (2017): 5271–76. http://dx.doi.org/10.1073/pnas.1701006114.
Full textOkusa, M. D., R. J. Unwin, H. Velazquez, G. Giebisch, and F. S. Wright. "Active potassium absorption by the renal distal tubule." American Journal of Physiology-Renal Physiology 262, no. 3 (1992): F488—F493. http://dx.doi.org/10.1152/ajprenal.1992.262.3.f488.
Full textKauker, M. L., L. M. Castle, L. Haag, and E. T. Zawada. "Microperfusion studies of the effect of a calcium antagonist, nisoldipine on the renal tubular efflux of calcium." European Journal of Pharmacology 183, no. 4 (1990): 1155–56. http://dx.doi.org/10.1016/0014-2999(90)94243-q.
Full textMüller-Berger, S., I. Samarzija, M. Kunimi, H. Yamada, E. Frömter, and G. Seki. "A stop-flow microperfusion technique for rapid determination of HCO3 – absorption/H+ secretion by isolated renal tubules." Pflügers Archiv - European Journal of Physiology 439, no. 1 (1999): 208–15. http://dx.doi.org/10.1007/s004249900171.
Full textWei, Jin, Jinxiu Zhu, Jie Zhang, et al. "Aging Impairs Renal Autoregulation in Mice." Hypertension 75, no. 2 (2020): 405–12. http://dx.doi.org/10.1161/hypertensionaha.119.13588.
Full textStanton, Bruce A. "Renal potassium transport: the pioneering studies of Gerhard Giebisch." American Journal of Physiology-Renal Physiology 298, no. 2 (2010): F233—F234. http://dx.doi.org/10.1152/ajprenal.00669.2009.
Full textBlantz, R. C., O. W. Peterson, and S. C. Thomson. "Tubuloglomerular feedback responses to acute contralateral nephrectomy." American Journal of Physiology-Renal Physiology 260, no. 5 (1991): F749—F756. http://dx.doi.org/10.1152/ajprenal.1991.260.5.f749.
Full textPeti-Peterdi, János. "Multiphoton imaging of renal tissues in vitro." American Journal of Physiology-Renal Physiology 288, no. 6 (2005): F1079—F1083. http://dx.doi.org/10.1152/ajprenal.00385.2004.
Full textSalmond, R., and F. D. Seney. "Reset tubuloglomerular feedback permits and sustains glomerular hyperfunction after extensive renal ablation." American Journal of Physiology-Renal Physiology 260, no. 3 (1991): F395—F401. http://dx.doi.org/10.1152/ajprenal.1991.260.3.f395.
Full textMüller-Berger, S., I. Samarzija, M. Kunimi, H. Yamada, E. Frömter, and G. Seki. "A stop-flow microperfusion technique for rapid determination of HCO 3 - absorption/H + secretion by isolated renal tubules." Pfl�gers Archiv European Journal of Physiology 439, no. 1-2 (1999): 208–15. http://dx.doi.org/10.1007/s004240051146.
Full textWelch, William J., Akihiro Tojo, and Christopher S. Wilcox. "Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR." American Journal of Physiology-Renal Physiology 278, no. 5 (2000): F769—F776. http://dx.doi.org/10.1152/ajprenal.2000.278.5.f769.
Full textDESCHÊNES, GEORGES, MONIKA WITTNER, ANTONIO DI STEFANO, SYLVIE JOUNIER, and ALAIN DOUCET. "Collecting Duct Is a Site of Sodium Retention in PAN Nephrosis: A Rationale for Amiloride Therapy." Journal of the American Society of Nephrology 12, no. 3 (2001): 598–601. http://dx.doi.org/10.1681/asn.v123598.
Full textKinoshita, Y., and F. G. Knox. "Response of superficial proximal convoluted tubule to decreased and increased renal perfusion pressure. In vivo microperfusion study in rats." Circulation Research 66, no. 5 (1990): 1184–89. http://dx.doi.org/10.1161/01.res.66.5.1184.
Full textPallone, T. L. "A simplified device for injection of paraffin wax blockades." American Journal of Physiology-Renal Physiology 266, no. 4 (1994): F681—F683. http://dx.doi.org/10.1152/ajprenal.1994.266.4.f681.
Full textWelch, William J., Akihiro Tojo, Jong-Un Lee, Dae Gil Kang, Christine G. Schnackenberg, and Christopher S. Wilcox. "Nitric oxide synthase in the JGA of the SHR: expression and role in tubuloglomerular feedback." American Journal of Physiology-Renal Physiology 277, no. 1 (1999): F130—F138. http://dx.doi.org/10.1152/ajprenal.1999.277.1.f130.
Full textVehaskari, V. M., and J. Herndon. "Role of mineralocorticoids in adaptation of rabbit cortical collecting duct after loss of renal mass." American Journal of Physiology-Renal Physiology 260, no. 6 (1991): F793—F799. http://dx.doi.org/10.1152/ajprenal.1991.260.6.f793.
Full textWang, T. "Nitric oxide regulates HCO3- and Na+ transport by a cGMP-mediated mechanism in the kidney proximal tubule." American Journal of Physiology-Renal Physiology 272, no. 2 (1997): F242—F248. http://dx.doi.org/10.1152/ajprenal.1997.272.2.f242.
Full textVelazquez, H., A. Bartiss, P. Bernstein, and D. H. Ellison. "Adrenal steroids stimulate thiazide-sensitive NaCl transport by rat renal distal tubules." American Journal of Physiology-Renal Physiology 270, no. 1 (1996): F211—F219. http://dx.doi.org/10.1152/ajprenal.1996.270.1.f211.
Full textBencsath, P., G. Szenasi, and L. Takacs. "Water and electrolyte transport in Henle's loop and distal tubule after renal sympathectomy in the rat." American Journal of Physiology-Renal Physiology 249, no. 2 (1985): F308—F314. http://dx.doi.org/10.1152/ajprenal.1985.249.2.f308.
Full textChristensen, E. I., J. Gliemann, and S. K. Moestrup. "Renal tubule gp330 is a calcium binding receptor for endocytic uptake of protein." Journal of Histochemistry & Cytochemistry 40, no. 10 (1992): 1481–90. http://dx.doi.org/10.1177/40.10.1382088.
Full textPeti-Peterdi, János, James L. Burford, and Matthias J. Hackl. "The first decade of using multiphoton microscopy for high-power kidney imaging." American Journal of Physiology-Renal Physiology 302, no. 2 (2012): F227—F233. http://dx.doi.org/10.1152/ajprenal.00561.2011.
Full textMehrabi, A., M. Golling, M. Korting, et al. "Different impact of normo- and hypotensive brain death on renal macro- and microperfusion--an experimental evaluation in a porcine model." Nephrology Dialysis Transplantation 19, no. 10 (2004): 2456–63. http://dx.doi.org/10.1093/ndt/gfh424.
Full textChatsudthipong, V., and Y. L. Chan. "Inhibitory effect of angiotensin II on renal tubular transport." American Journal of Physiology-Renal Physiology 260, no. 3 (1991): F340—F346. http://dx.doi.org/10.1152/ajprenal.1991.260.3.f340.
Full textPollock, D. M., and W. J. Arendshorst. "Native tubular fluid attenuates ANF-induced inhibition of tubuloglomerular feedback." American Journal of Physiology-Renal Physiology 258, no. 1 (1990): F189—F198. http://dx.doi.org/10.1152/ajprenal.1990.258.1.f189.
Full textVelazquez, H., and F. S. Wright. "Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule." American Journal of Physiology-Renal Physiology 250, no. 6 (1986): F1013—F1023. http://dx.doi.org/10.1152/ajprenal.1986.250.6.f1013.
Full textInoue, Bruna H., Leonardo dos Santos, Thaissa D. Pessoa, et al. "Increased NHE3 abundance and transport activity in renal proximal tubule of rats with heart failure." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 302, no. 1 (2012): R166—R174. http://dx.doi.org/10.1152/ajpregu.00127.2011.
Full textFrank, Amy E., Charles S. Wingo, and I. David Weiner. "Effects of ammonia on bicarbonate transport in the cortical collecting duct." American Journal of Physiology-Renal Physiology 278, no. 2 (2000): F219—F226. http://dx.doi.org/10.1152/ajprenal.2000.278.2.f219.
Full textLiu, F. Y., and M. G. Cogan. "Atrial natriuretic factor does not inhibit basal or angiotensin II-stimulated proximal transport." American Journal of Physiology-Renal Physiology 255, no. 3 (1988): F434—F437. http://dx.doi.org/10.1152/ajprenal.1988.255.3.f434.
Full textJutabha, Promsuk, Chaivat Toskulkao, and Varanuj Chatsudthipong. "Effect of stevioside on PAH transport by isolated perfused rabbit renal proximal tubule." Canadian Journal of Physiology and Pharmacology 78, no. 9 (2000): 737–44. http://dx.doi.org/10.1139/y00-051.
Full textTripathi, S., E. L. Boulpaep, and A. B. Maunsbach. "Isolated perfused Ambystoma proximal tubule: hydrodynamics modulates ultrastructure." American Journal of Physiology-Renal Physiology 252, no. 6 (1987): F1129—F1147. http://dx.doi.org/10.1152/ajprenal.1987.252.6.f1129.
Full textVelazquez, H., D. H. Ellison, and F. S. Wright. "Chloride-dependent potassium secretion in early and late renal distal tubules." American Journal of Physiology-Renal Physiology 253, no. 3 (1987): F555—F562. http://dx.doi.org/10.1152/ajprenal.1987.253.3.f555.
Full textBorges-Júnior, Flávio A., Danúbia Silva dos Santos, Acaris Benetti, et al. "Empagliflozin Inhibits Proximal Tubule NHE3 Activity, Preserves GFR, and Restores Euvolemia in Nondiabetic Rats with Induced Heart Failure." Journal of the American Society of Nephrology 32, no. 7 (2021): 1616–29. http://dx.doi.org/10.1681/asn.2020071029.
Full textChambrey, Régine, Dominique Goossens, Soline Bourgeois, et al. "Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion." American Journal of Physiology-Renal Physiology 289, no. 6 (2005): F1281—F1290. http://dx.doi.org/10.1152/ajprenal.00172.2005.
Full textMacLaughin, M., and M. Mello Aires. "Renal Acidification Defect Induced by Lithium in Control and Acidotic Rats." Clinical Science 79, no. 1 (1990): 23–27. http://dx.doi.org/10.1042/cs0790023.
Full textUllrich, K. J., and G. Rumrich. "Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions." American Journal of Physiology-Renal Physiology 254, no. 4 (1988): F453—F462. http://dx.doi.org/10.1152/ajprenal.1988.254.4.f453.
Full textEllison, D. H., H. Velazquez, and F. S. Wright. "Stimulation of distal potassium secretion by low lumen chloride in the presence of barium." American Journal of Physiology-Renal Physiology 248, no. 5 (1985): F638—F649. http://dx.doi.org/10.1152/ajprenal.1985.248.5.f638.
Full textEllison, D. H., H. Velazquez, and F. S. Wright. "Unidirectional potassium fluxes in renal distal tubule: effects of chloride and barium." American Journal of Physiology-Renal Physiology 250, no. 5 (1986): F885—F894. http://dx.doi.org/10.1152/ajprenal.1986.250.5.f885.
Full text