Journal articles on the topic 'Renal progenitors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Renal progenitors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hasegawa, Sho, Tetsuhiro Tanaka, and Masaomi Nangaku. "Recent advances in renal regeneration." F1000Research 8 (February 25, 2019): 216. http://dx.doi.org/10.12688/f1000research.17127.1.
Full textAl-Marsoummi, Sarmad, Aaron A. Mehus, Swojani Shrestha, et al. "Proteasomes Are Critical for Maintenance of CD133+CD24+ Kidney Progenitor Cells." International Journal of Molecular Sciences 24, no. 17 (2023): 13303. http://dx.doi.org/10.3390/ijms241713303.
Full textSequeira-Lopez, Maria Luisa S., Eugene E. Lin, Minghong Li, Yan Hu, Curt D. Sigmund, and R. Ariel Gomez. "The earliest metanephric arteriolar progenitors and their role in kidney vascular development." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 308, no. 2 (2015): R138—R149. http://dx.doi.org/10.1152/ajpregu.00428.2014.
Full textPeired, Anna Julie, Maria Elena Melica, Alice Molli, Cosimo Nardi, Paola Romagnani, and Laura Lasagni. "Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle?" Cells 10, no. 1 (2021): 59. http://dx.doi.org/10.3390/cells10010059.
Full textHolmes, David. "Budding renal progenitors." Nature Reviews Nephrology 10, no. 1 (2013): 4. http://dx.doi.org/10.1038/nrneph.2013.245.
Full textPhua, Yu Leng, Kevin Hong Chen, Shelby L. Hemker, et al. "Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors." American Journal of Physiology-Renal Physiology 316, no. 5 (2019): F993—F1005. http://dx.doi.org/10.1152/ajprenal.00450.2018.
Full textMontenegro, Francesca, Francesca Giannuzzi, Angela Picerno, et al. "How Stem and Progenitor Cells Can Affect Renal Diseases." Cells 13, no. 17 (2024): 1460. http://dx.doi.org/10.3390/cells13171460.
Full textVolovelsky, Oded, Thi Nguyen, Alison E. Jarmas, et al. "Hamartin regulates cessation of mouse nephrogenesis independently of Mtor." Proceedings of the National Academy of Sciences 115, no. 23 (2018): 5998–6003. http://dx.doi.org/10.1073/pnas.1712955115.
Full textPeired, Anna Julie, Giulia Antonelli, Maria Lucia Angelotti, et al. "Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells." Science Translational Medicine 12, no. 536 (2020): eaaw6003. http://dx.doi.org/10.1126/scitranslmed.aaw6003.
Full textRymer, Christopher, Jose Paredes, Kimmo Halt, et al. "Renal blood flow and oxygenation drive nephron progenitor differentiation." American Journal of Physiology-Renal Physiology 307, no. 3 (2014): F337—F345. http://dx.doi.org/10.1152/ajprenal.00208.2014.
Full textChu, Jessica Y. S., Sunder Sims-Lucas, Daniel S. Bushnell, Andrew J. Bodnar, Jordan A. Kreidberg, and Jacqueline Ho. "Dicer function is required in the metanephric mesenchyme for early kidney development." American Journal of Physiology-Renal Physiology 306, no. 7 (2014): F764—F772. http://dx.doi.org/10.1152/ajprenal.00426.2013.
Full textGupta, Ashwani Kumar, David Z. Ivancic, Bilal A. Naved, Jason A. Wertheim, and Leif Oxburgh. "An efficient method to generate kidney organoids at the air-liquid interface." Journal of Biological Methods 8, no. 2 (2021): e150. http://dx.doi.org/10.14440/jbm.2021.357.
Full textMeyer-Schwesinger, Catherine. "The Role of Renal Progenitors in Renal Regeneration." Nephron 132, no. 2 (2016): 101–9. http://dx.doi.org/10.1159/000442180.
Full textBussolati, Benedetta, Aldo Moggio, Federica Collino, et al. "Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance." American Journal of Physiology-Renal Physiology 302, no. 1 (2012): F116—F128. http://dx.doi.org/10.1152/ajprenal.00184.2011.
Full textTanigawa, Shunsuke, and Alan O. Perantoni. "Modeling renal progenitors – defining the niche." Differentiation 91, no. 4-5 (2016): 152–58. http://dx.doi.org/10.1016/j.diff.2016.01.007.
Full textSchrankl, Julia, Bjoern Neubauer, Michaela Fuchs, Katharina Gerl, Charlotte Wagner, and Armin Kurtz. "Apparently normal kidney development in mice with conditional disruption of ANG II-AT1 receptor genes in FoxD1-positive stroma cell precursors." American Journal of Physiology-Renal Physiology 316, no. 6 (2019): F1191—F1200. http://dx.doi.org/10.1152/ajprenal.00305.2018.
Full textRossbach, Bella, Krithika Hariharan, Nancy Mah, et al. "Human iPSC-Derived Renal Cells Change Their Immunogenic Properties during Maturation: Implications for Regenerative Therapies." Cells 11, no. 8 (2022): 1328. http://dx.doi.org/10.3390/cells11081328.
Full textTakahashi, Takamune, Keiko Takahashi, Sebastian Gerety, Hai Wang, David J. Anderson, and Thomas O. Daniel. "Temporally Compartmentalized Expression of Ephrin-B2 during Renal Glomerular Development." Journal of the American Society of Nephrology 12, no. 12 (2001): 2673–82. http://dx.doi.org/10.1681/asn.v12122673.
Full textLazzeri, Elena, Clara Crescioli, Elisa Ronconi, et al. "Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure." Journal of the American Society of Nephrology 18, no. 12 (2007): 3128–38. http://dx.doi.org/10.1681/asn.2007020210.
Full textTan, Zenglai, Aleksandra Rak-Raszewska, Ilya Skovorodkin, and Seppo J. Vainio. "Mouse Embryonic Stem Cell-Derived Ureteric Bud Progenitors Induce Nephrogenesis." Cells 9, no. 2 (2020): 329. http://dx.doi.org/10.3390/cells9020329.
Full textLindström, Nils O., Jinjin Guo, Albert D. Kim, et al. "Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney." Journal of the American Society of Nephrology 29, no. 3 (2018): 806–24. http://dx.doi.org/10.1681/asn.2017080890.
Full textBussolati, Benedetta, Alessia Brossa, and Giovanni Camussi. "Resident Stem Cells and Renal Carcinoma." International Journal of Nephrology 2011 (2011): 1–6. http://dx.doi.org/10.4061/2011/286985.
Full textDessypris, E., SE Graber, SB Krantz, and WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo." Blood 72, no. 6 (1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.2060.
Full textDessypris, E., SE Graber, SB Krantz, and WJ Stone. "Effects of recombinant erythropoietin on the concentration and cycling status of human marrow hematopoietic progenitor cells in vivo." Blood 72, no. 6 (1988): 2060–62. http://dx.doi.org/10.1182/blood.v72.6.2060.bloodjournal7262060.
Full textDionne, Lai Kuan, Kyuhwan Shim, Masato Hoshi, et al. "Centrosome amplification disrupts renal development and causes cystogenesis." Journal of Cell Biology 217, no. 7 (2018): 2485–501. http://dx.doi.org/10.1083/jcb.201710019.
Full textSheybani-Deloui, Sepideh, Lijun Chi, Marian V. Staite, et al. "Activated Hedgehog-GLI Signaling Causes Congenital Ureteropelvic Junction Obstruction." Journal of the American Society of Nephrology 29, no. 2 (2017): 532–44. http://dx.doi.org/10.1681/asn.2017050482.
Full textNag, Sparshita, and Ashleigh S. Boyd. "Decellularization of Mouse Kidneys to Generate an Extracellular Matrix Gel for Human Induced Pluripotent Stem Cell Derived Renal Organoids." Organoids 2, no. 1 (2023): 66–78. http://dx.doi.org/10.3390/organoids2010005.
Full textVinsonneau, C., A. Girshovich, M. Ben M'rad, et al. "Intrarenal urothelium proliferation: an unexpected early event following ischemic injury." American Journal of Physiology-Renal Physiology 299, no. 3 (2010): F479—F486. http://dx.doi.org/10.1152/ajprenal.00585.2009.
Full textChambers, Brooke E., and Rebecca A. Wingert. "Renal progenitors: Roles in kidney disease and regeneration." World Journal of Stem Cells 8, no. 11 (2016): 367. http://dx.doi.org/10.4252/wjsc.v8.i11.367.
Full textRonconi, Elisa, Costanza Sagrinati, Maria Lucia Angelotti, et al. "Regeneration of Glomerular Podocytes by Human Renal Progenitors." Journal of the American Society of Nephrology 20, no. 2 (2008): 322–32. http://dx.doi.org/10.1681/asn.2008070709.
Full textRomagnani, Paola, and Giuseppe Remuzzi. "Renal progenitors in non-diabetic and diabetic nephropathies." Trends in Endocrinology & Metabolism 24, no. 1 (2013): 13–20. http://dx.doi.org/10.1016/j.tem.2012.09.002.
Full textBecherucci, Francesca, Elena Lazzeri, Laura Lasagni, and Paola Romagnani. "Renal progenitors and childhood: from development to disorders." Pediatric Nephrology 29, no. 4 (2014): 711–19. http://dx.doi.org/10.1007/s00467-013-2686-2.
Full textDrummond, Bridgette E., Brooke E. Chambers, Hannah M. Wesselman, et al. "osr1 Maintains Renal Progenitors and Regulates Podocyte Development by Promoting wnt2ba via the Antagonism of hand2." Biomedicines 10, no. 11 (2022): 2868. http://dx.doi.org/10.3390/biomedicines10112868.
Full textOsafune, Kenji. "iPSC technology-based regenerative medicine for kidney diseases." Clinical and Experimental Nephrology 25, no. 6 (2021): 574–84. http://dx.doi.org/10.1007/s10157-021-02030-x.
Full textUrbach, A., A. Yermalovich, J. Zhang, et al. "Lin28 sustains early renal progenitors and induces Wilms tumor." Genes & Development 28, no. 9 (2014): 971–82. http://dx.doi.org/10.1101/gad.237149.113.
Full textRomagnani, Paola, Laura Lasagni, and Giuseppe Remuzzi. "Renal progenitors: an evolutionary conserved strategy for kidney regeneration." Nature Reviews Nephrology 9, no. 3 (2013): 137–46. http://dx.doi.org/10.1038/nrneph.2012.290.
Full textBarasch, J., J. Yang, and K. Mori. "INDUCTION OF NEPHRONS FROM RENAL PROGENITORS BY MULTIPLE SIGNALS." ASAIO Journal 49, no. 2 (2003): 198. http://dx.doi.org/10.1097/00002480-200303000-00230.
Full textBarak, Y., L. Sinai-Treiman, Y. Karov, A. Abrahamov, and A. Drukker. "Hematopoietic Progenitors in Children with End-Stage Renal Disease." Pediatric Hematology and Oncology 11, no. 6 (1994): 633–39. http://dx.doi.org/10.3109/08880019409141810.
Full textWang, Honghe, Yili Yang, Nirmala Sharma, et al. "STAT1 activation regulates proliferation and differentiation of renal progenitors." Cellular Signalling 22, no. 11 (2010): 1717–26. http://dx.doi.org/10.1016/j.cellsig.2010.06.012.
Full textZávada, Jakub, L. Kideryová, R. Pytlík, and V. Tesař. "Circulating Endothelial Cells and Circulating Endothelial Progenitors in Kidney Disease – Victims, Witnesses, or Accomplices?" Folia Biologica 54, no. 3 (2008): 73–80. http://dx.doi.org/10.14712/fb2008054030073.
Full textZhang, Joyce, Felix Kommoss, Branden Lynch, et al. "Abstract 2611: Cellular origin of DICER1 tumor predisposition syndrome informed by lineage-traceable genetically engineered mouse model." Cancer Research 85, no. 8_Supplement_1 (2025): 2611. https://doi.org/10.1158/1538-7445.am2025-2611.
Full textJackson, Ashley R., Monica L. Hoff, Birong Li, Christina B. Ching, Kirk M. McHugh, and Brian Becknell. "Krt5+ urothelial cells are developmental and tissue repair progenitors in the kidney." American Journal of Physiology-Renal Physiology 317, no. 3 (2019): F757—F766. http://dx.doi.org/10.1152/ajprenal.00171.2019.
Full textYosypiv, Ihor V., Maria Luisa S. Sequeira-Lopez, Renfang Song, and Alexandre De Goes Martini. "Stromal prorenin receptor is critical for normal kidney development." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 316, no. 5 (2019): R640—R650. http://dx.doi.org/10.1152/ajpregu.00320.2018.
Full textDe Filippo, Roger E., Ilenia Zanusso, Stefano Da Sacco, et al. "Amniotic fluid renal progenitors and renal extracellular matrix: a new approach for kidney regeneration." Journal of the American College of Surgeons 219, no. 4 (2014): e55. http://dx.doi.org/10.1016/j.jamcollsurg.2014.07.531.
Full textFranzin, Rossana, Alessandra Stasi, Giuseppe De Palma, et al. "Human Adult Renal Progenitor Cells Prevent Cisplatin-Nephrotoxicity by Inducing CYP1B1 Overexpression and miR-27b-3p Down-Regulation through Extracellular Vesicles." Cells 12, no. 12 (2023): 1655. http://dx.doi.org/10.3390/cells12121655.
Full textMukherjee, Elina, Katherine Maringer, Emily Papke, et al. "Endothelial marker-expressing stromal cells are critical for kidney formation." American Journal of Physiology-Renal Physiology 313, no. 3 (2017): F611—F620. http://dx.doi.org/10.1152/ajprenal.00136.2017.
Full textChan, Charles, Ching-Cheng Chen, Daniel L. Kraft, et al. "Identification and Isolation of the Hematopoietic Stem Cell Niche Initiating Cell Population." Blood 112, no. 11 (2008): 3574. http://dx.doi.org/10.1182/blood.v112.11.3574.3574.
Full textAtala, Anthony. "Re: Lin28 Sustains Early Renal Progenitors and Induces Wilms Tumor." Journal of Urology 193, no. 2 (2015): 730–31. http://dx.doi.org/10.1016/j.juro.2014.11.021.
Full textBombelli, Silvia, Chiara Meregalli, Chiara Grasselli, et al. "PKHhigh/CD133+/CD24− Renal Stem-Like Cells Isolated from Human Nephrospheres Exhibit In Vitro Multipotency." Cells 9, no. 8 (2020): 1805. http://dx.doi.org/10.3390/cells9081805.
Full textZhang, Jiong, Jeffrey W. Pippin, Ronald D. Krofft, Shokichi Naito, Zhi-Hong Liu, and Stuart J. Shankland. "Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS." American Journal of Physiology-Renal Physiology 304, no. 11 (2013): F1375—F1389. http://dx.doi.org/10.1152/ajprenal.00020.2013.
Full text