Academic literature on the topic 'Representation of algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Representation of algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Representation of algebras"
Rouquier, Raphaël. "Quiver Hecke Algebras and 2-Lie Algebras." Algebra Colloquium 19, no. 02 (May 3, 2012): 359–410. http://dx.doi.org/10.1142/s1005386712000247.
Full textBehn, Antonio, Alicia Labra, and Cristián Reyes. "Irreducible Representations of Power-associative Train Algebras." Algebra Colloquium 22, spec01 (November 6, 2015): 903–8. http://dx.doi.org/10.1142/s1005386715000759.
Full textGoodwin, Simon M., Gerhard Röhrle, and Glenn Ubly. "On 1-dimensional representations of finite W-algebras associated to simple Lie algebras of exceptional type." LMS Journal of Computation and Mathematics 13 (September 2, 2010): 357–69. http://dx.doi.org/10.1112/s1461157009000205.
Full textBenjumea, J. C., J. Núnez, and A. F. Tenorio. "Minimal linear representations of the low-dimensional nilpotent Lie algebras." MATHEMATICA SCANDINAVICA 102, no. 1 (March 1, 2008): 17. http://dx.doi.org/10.7146/math.scand.a-15048.
Full textZhou, Jian. "Representation Rings of Classical Groups and Hopf Algebras." International Journal of Mathematics 14, no. 05 (July 2003): 461–77. http://dx.doi.org/10.1142/s0129167x03001922.
Full textDräxler, Peter. "Normal Forms for Representations of Representation-finite Algebras." Journal of Symbolic Computation 32, no. 5 (November 2001): 491–97. http://dx.doi.org/10.1006/jsco.2000.0480.
Full textGonçalves, Daniel, Hui Li, and Danilo Royer. "Branching systems and general Cuntz–Krieger uniqueness theorem for ultragraph C*-algebras." International Journal of Mathematics 27, no. 10 (September 2016): 1650083. http://dx.doi.org/10.1142/s0129167x1650083x.
Full textDräxler, Peter. "Representation-Directed Diamonds." LMS Journal of Computation and Mathematics 4 (2001): 14–21. http://dx.doi.org/10.1112/s1461157000000784.
Full textGifford, James A. "Operator algebras with a reduction property." Journal of the Australian Mathematical Society 80, no. 3 (June 2006): 297–315. http://dx.doi.org/10.1017/s1446788700014026.
Full textMassuyeau, Gwénaël, and Vladimir Turaev. "Brackets in representation algebras of Hopf algebras." Journal of Noncommutative Geometry 12, no. 2 (July 2, 2018): 577–636. http://dx.doi.org/10.4171/jncg/286.
Full textDissertations / Theses on the topic "Representation of algebras"
Banjo, Elizabeth. "Representation theory of algebras related to the partition algebra." Thesis, City University London, 2013. http://openaccess.city.ac.uk/2360/.
Full textHmaida, Mufida Mohamed A. "Representation theory of algebras related to the bubble algebra." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15987/.
Full textSpeyer, Liron. "Representation theory of Khovanov-Lauda-Rouquier algebras." Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9114.
Full textCarr, Andrew Nickolas. "Lie Algebras and Representation Theory." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1988.
Full textLaking, Rosanna Davison. "String algebras in representation theory." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/string-algebras-in-representation-theory(c350436a-db9a-429d-a8a5-470dffc0974f).html.
Full textBoddington, Paul. "No-cycle algebras and representation theory." Thesis, University of Warwick, 2004. http://wrap.warwick.ac.uk/3482/.
Full textVaso, Laertis. "Cluster Tilting for Representation-Directed Algebras." Licentiate thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-364224.
Full textNash, David A. 1982. "Graded representation theory of Hecke algebras." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10871.
Full textWe study the graded representation theory of the Iwahori-Hecke algebra, denoted by Hd , of the symmetric group over a field of characteristic zero at a root of unity. More specifically, we use graded Specht modules to calculate the graded decomposition numbers for Hd . The algorithm arrived at is the Lascoux-Leclerc-Thibon algorithm in disguise. Thus we interpret the algorithm in terms of graded representation theory. We then use the algorithm to compute several examples and to obtain a closed form for the graded decomposition numbers in the case of two-column partitions. In this case, we also precisely describe the 'reduction modulo p' process, which relates the graded irreducible representations of Hd over [Special characters omitted.] at a p th -root of unity to those of the group algebra of the symmetric group over a field of characteristic p.
Committee in charge: Alexander Kleshchev, Chairperson, Mathematics; Jonathan Brundan, Member, Mathematics; Boris Botvinnik, Member, Mathematics; Victor Ostrik, Member, Mathematics; William Harbaugh, Outside Member, Economics
King, Oliver. "The representation theory of diagram algebras." Thesis, City University London, 2014. http://openaccess.city.ac.uk/5915/.
Full textAhmed, Chwas Abas. "Representation theory of diagram algebras : subalgebras and generalisations of the partition algebra." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15997/.
Full textBooks on the topic "Representation of algebras"
Erdmann, Karin, and Thorsten Holm. Algebras and Representation Theory. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91998-0.
Full textStuart, Martin. Schur algebras and representation theory. Cambridge: Cambridge University Press, 1993.
Find full textAuslander, Maurice. Representation theory of Artin algebras. Cambridge, U.K: Cambridge University Press, 1997.
Find full textAssem, Ibrahim, and Flávio U. Coelho. Basic Representation Theory of Algebras. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35118-2.
Full textAuslander, Maurice. Representation theory of Artin algebras. Cambridge: Cambridge University Press, 1995.
Find full textW, Roggenkamp Klaus, Stefanescu Mirela, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Algebra, representation theory. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textUnbounded operator algebras and representation theory. Basel: Birkhäuser Verlag, 1990.
Find full textHumphreys, James E. Introduction to Lie algebras and representation theory. 7th ed. New York: Springer, 1997.
Find full textIntroduction to Lie algebras and representation theory. 6th ed. New York: Springer-Verlag, 1994.
Find full textBook chapters on the topic "Representation of algebras"
Assem, Ibrahim, and Flávio U. Coelho. "Representation-finite algebras." In Graduate Texts in Mathematics, 271–304. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35118-2_6.
Full textBarot, Michael. "Algebras." In Introduction to the Representation Theory of Algebras, 33–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11475-0_3.
Full textFinkelberg, Michael, and Victor Ginzburg. "Cherednik Algebras for Algebraic Curves." In Representation Theory of Algebraic Groups and Quantum Groups, 121–53. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4697-4_6.
Full textOkniŃski, Jan. "In Search for Noetherian Algebras." In Algebra — Representation Theory, 235–47. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0814-3_11.
Full textHassani, Sadri. "Representation of Clifford Algebras." In Mathematical Physics, 987–1007. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_31.
Full textVladimirov, D. A. "Representation of Boolean Algebras." In Boolean Algebras in Analysis, 125–79. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0936-1_4.
Full textGivant, Steven. "Representation theorems." In Advanced Topics in Relation Algebras, 201–314. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65945-9_4.
Full textHowe, Roger. "Pieri algebras and Hibi algebras in representation theory." In Symmetry: Representation Theory and Its Applications, 353–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1590-3_13.
Full textMontgomery, S. "Representation Theory of Semisimple Hopf Algebras." In Algebra — Representation Theory, 189–218. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0814-3_9.
Full textChriss, Neil, and Victor Ginzburg. "Representations of Convolution Algebras." In Representation Theory and Complex Geometry, 411–86. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4938-8_9.
Full textConference papers on the topic "Representation of algebras"
Duntsch, Ivo, and Michael Winter. "Timed Contact Algebras." In 2009 16th International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2009. http://dx.doi.org/10.1109/time.2009.22.
Full textLeclerc, Bernard. "Cluster Algebras and Representation Theory." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0154.
Full textACCARDI, L., A. BOUKAS, and J. MISIEWICZ. "EXISTENCE OF THE FOCK REPRESENTATION FOR CURRENT ALGEBRAS OF THE GALILEI ALGEBRA." In Proceedings of the 30th Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338745_0001.
Full textRajan, G. Susinder, and B. Sundar Rajan. "STBCs from Representation of Extended Clifford Algebras." In 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557141.
Full textNiederle, J., and J. Paseka. "Triple Representation Theorem for Homogeneous Effect Algebras." In 2012 IEEE 42nd International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2012. http://dx.doi.org/10.1109/ismvl.2012.27.
Full textKawazoe, T., T. Oshima, and S. Sano. "Representation Theory of Lie Groups and Lie Algebras." In Fuji-Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537162.
Full textRivieccio, Umberto, Tommaso Flaminio, and Thiago Nascimento. "On the representation of (weak) nilpotent minimum algebras." In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020. http://dx.doi.org/10.1109/fuzz48607.2020.9177641.
Full textHanxing Lin. "On the representation dimension of triangular matrix algebras." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002464.
Full textChajda, Ivan, and Jan Paseka. "Set Representation of Partial Dynamic De Morgan Algebras." In 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2016. http://dx.doi.org/10.1109/ismvl.2016.14.
Full textPaseka, Jan, and Radek Slesinger. "A Representation Theorem for Quantale Valued sup-algebras." In 2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2018. http://dx.doi.org/10.1109/ismvl.2018.00024.
Full textReports on the topic "Representation of algebras"
Krýsl, Svatopluk. Analysis Over $C^*$-Algebras and the Oscillatory Representation. GIQ, 2014. http://dx.doi.org/10.7546/giq-15-2014-173-195.
Full textKrysl, Svatopluk Krysl. Analysis Over $C^*$-Algebras and the Oscillatory Representation. Jgsp, 2014. http://dx.doi.org/10.7546/jgsp-33-2014-1-25.
Full textBerceanu, Stefan. A Holomorphic Representation of the Semidirect Sum of Symplectic and Heisenberg Lie Algebras. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-5-2006-5-13.
Full textBirenbaum, Menucha, Anthony E. Kelly, and KiKumi K. Tatsuoka. Toward a Stable Diagnostic Representation of Students' Errors in Algebra. Fort Belvoir, VA: Defense Technical Information Center, October 1992. http://dx.doi.org/10.21236/ada257319.
Full textMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada282926.
Full textMundy, Joseph L. Representation and Recognition with Algebraic Invariants and Geometric Constraint Models. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada271395.
Full textGoodman, I. R. Algebraic Representations of Linguistic and Numerical Modifications of Probability Statements and Inferences Based on a Product Space Construction. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada306334.
Full text