Journal articles on the topic 'Representation space / Latent space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Representation space / Latent space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gat, Itai, Guy Lorberbom, Idan Schwartz, and Tamir Hazan. "Latent Space Explanation by Intervention." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 679–87. http://dx.doi.org/10.1609/aaai.v36i1.19948.
Full textHuang, Yulei, Ziping Ma, Huirong Li, and Jingyu Wang. "Dual Space Latent Representation Learning for Image Representation." Mathematics 11, no. 11 (2023): 2526. http://dx.doi.org/10.3390/math11112526.
Full textJin Dai, Jin Dai, and Zhifang Zheng Jin Dai. "Disentangling Representation of Variational Autoencoders Based on Cloud Models." 電腦學刊 34, no. 6 (2023): 001–14. http://dx.doi.org/10.53106/199115992023123406001.
Full textHeese, Raoul, Jochen Schmid, Michał Walczak, and Michael Bortz. "Calibrated simplex-mapping classification." PLOS ONE 18, no. 1 (2023): e0279876. http://dx.doi.org/10.1371/journal.pone.0279876.
Full textNamatēvs, Ivars, Artūrs Ņikuļins, Anda Slaidiņa, Laura Neimane, Oskars Radziņš, and Kaspars Sudars. "Towards Explainability of the Latent Space by Disentangled Representation Learning." Information Technology and Management Science 26 (November 30, 2023): 41–48. http://dx.doi.org/10.7250/itms-2023-0006.
Full textToledo-Marín, J. Quetzalcóatl, and James A. Glazier. "Using deep LSD to build operators in GANs latent space with meaning in real space." PLOS ONE 18, no. 6 (2023): e0287736. http://dx.doi.org/10.1371/journal.pone.0287736.
Full textSang, Neil. "Does Time Smoothen Space? Implications for Space-Time Representation." ISPRS International Journal of Geo-Information 12, no. 3 (2023): 119. http://dx.doi.org/10.3390/ijgi12030119.
Full textShrivastava, Aditya Divyakant, and Douglas B. Kell. "FragNet, a Contrastive Learning-Based Transformer Model for Clustering, Interpreting, Visualizing, and Navigating Chemical Space." Molecules 26, no. 7 (2021): 2065. http://dx.doi.org/10.3390/molecules26072065.
Full textBanyay, Gregory A., and Andrew S. Wixom. "Latent space representation method for structural acoustic assessments." Journal of the Acoustical Society of America 155, no. 3_Supplement (2024): A141. http://dx.doi.org/10.1121/10.0027092.
Full textYou, Cong-Zhe, Vasile Palade, and Xiao-Jun Wu. "Robust structure low-rank representation in latent space." Engineering Applications of Artificial Intelligence 77 (January 2019): 117–24. http://dx.doi.org/10.1016/j.engappai.2018.09.008.
Full textIraki, Tarek, and Norbert Link. "Generative models for capturing and exploiting the influence of process conditions on process curves." Journal of Intelligent Manufacturing 33, no. 2 (2021): 473–92. http://dx.doi.org/10.1007/s10845-021-01846-4.
Full textChen, Man-Sheng, Ling Huang, Chang-Dong Wang, and Dong Huang. "Multi-View Clustering in Latent Embedding Space." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 3513–20. http://dx.doi.org/10.1609/aaai.v34i04.5756.
Full textZheng, Chuankun, Ruzhang Zheng, Rui Wang, Shuang Zhao, and Hujun Bao. "A Compact Representation of Measured BRDFs Using Neural Processes." ACM Transactions on Graphics 41, no. 2 (2022): 1–15. http://dx.doi.org/10.1145/3490385.
Full textASEERVATHAM, SUJEEVAN. "A CONCEPT VECTOR SPACE MODEL FOR SEMANTIC KERNELS." International Journal on Artificial Intelligence Tools 18, no. 02 (2009): 239–72. http://dx.doi.org/10.1142/s0218213009000123.
Full textStevens, Jesse, Daniel N. Wilke, and Isaac I. Setshedi. "Enhancing LS-PIE’s Optimal Latent Dimensional Identification: Latent Expansion and Latent Condensation." Mathematical and Computational Applications 29, no. 4 (2024): 65. http://dx.doi.org/10.3390/mca29040065.
Full textPerianez-Pascual, Jorge, Juan D. Gutiérrez, Laura Escobar-Encinas, Álvaro Rubio-Largo, and Roberto Rodriguez-Echeverria. "Beyond Spectrograms: Rethinking Audio Classification from EnCodec’s Latent Space." Algorithms 18, no. 2 (2025): 108. https://doi.org/10.3390/a18020108.
Full textAsai, Masataro, Hiroshi Kajino, Alex Fukunaga, and Christian Muise. "Classical Planning in Deep Latent Space." Journal of Artificial Intelligence Research 74 (August 9, 2022): 1599–686. http://dx.doi.org/10.1613/jair.1.13768.
Full textTan, Zhen, Xiang Zhao, Yang Fang, Bin Ge, and Weidong Xiao. "Knowledge Graph Representation via Similarity-Based Embedding." Scientific Programming 2018 (July 15, 2018): 1–12. http://dx.doi.org/10.1155/2018/6325635.
Full textShang, Ronghua, Lujuan Wang, Fanhua Shang, Licheng Jiao, and Yangyang Li. "Dual space latent representation learning for unsupervised feature selection." Pattern Recognition 114 (June 2021): 107873. http://dx.doi.org/10.1016/j.patcog.2021.107873.
Full text周, 翊航. "Low-Rank Representation Algorithm Based on Latent Feature Space." Computer Science and Application 11, no. 04 (2021): 1140–48. http://dx.doi.org/10.12677/csa.2021.114117.
Full textBae, Seho, Nizam Ud Din, Hyunkyu Park, and Juneho Yi. "Exploiting an Intermediate Latent Space between Photo and Sketch for Face Photo-Sketch Recognition." Sensors 22, no. 19 (2022): 7299. http://dx.doi.org/10.3390/s22197299.
Full textWang, Hao, Lu Wang, Zhongyu Wang, Lixin Ma, and Ye Luo. "SSC-VAE: Structured Sparse Coding Based Variational Autoencoder for Detail Preserved Image Reconstruction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 7 (2025): 7665–73. https://doi.org/10.1609/aaai.v39i7.32825.
Full textSimhal, Anish K., Rena Elkin, Ross S. Firestone, Jung Hun Oh, and Joseph O. Deasy. "Abstract A031: Unsupervised graph-based visualization of variational autoencoder latent spaces reveals hidden multiple myeloma subtypes." Clinical Cancer Research 31, no. 13_Supplement (2025): A031. https://doi.org/10.1158/1557-3265.aimachine-a031.
Full textWu, Xiang, Huaibo Huang, Vishal M. Patel, Ran He, and Zhenan Sun. "Disentangled Variational Representation for Heterogeneous Face Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9005–12. http://dx.doi.org/10.1609/aaai.v33i01.33019005.
Full textKim, Jaein, Juwon Lee, Ungjin Jang, Seri Lee, and Jooyoung Park. "PyTorch/Pyro Implementation for Representation of Motion in Latent Space." Journal of Korean Institute of Intelligent Systems 28, no. 6 (2018): 558–63. http://dx.doi.org/10.5391/jkiis.2018.28.6.558.
Full textWin, Thinzar Aung, and Khamron Sunat. "Optimizing Latent Space Representation for Tourism Insights: A Metaheuristic Approach." Journal of Robotics and Control (JRC) 5, no. 2 (2024): 441–58. https://doi.org/10.18196/jrc.v5i2.21419.
Full textKirchoff, Kathryn E., Travis Maxfield, Alexander Tropsha, and Shawn M. Gomez. "SALSA: Semantically-Aware Latent Space Autoencoder." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13211–19. http://dx.doi.org/10.1609/aaai.v38i12.29221.
Full textRaja, Vinayak, and Bhuvi Chopra. "Fostering Privacy in Collaborative Data Sharing via Auto-encoder Latent Space Embedding." Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 4, no. 1 (2024): 152–62. http://dx.doi.org/10.60087/jaigs.v4i1.129.
Full textRaja, Vinayak, and BHUVI chopra. "Cultivating Privacy in Collaborative Data Sharing through Auto-encoder Latent Space Embeddings." Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 3, no. 1 (2024): 269–83. http://dx.doi.org/10.60087/jaigs.vol03.issue01.p283.
Full textRaja, Vinayak, and Bhuvi Chopra. "Cultivating Privacy in Collaborative Data Sharing through Auto-encoder Latent Space Embeddings." Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 3, no. 1 (2024): 371–91. http://dx.doi.org/10.60087/jaigs.v3i1.126.
Full textRivero, Daniel, Iván Ramírez-Morales, Enrique Fernandez-Blanco, Norberto Ezquerra, and Alejandro Pazos. "Classical Music Prediction and Composition by Means of Variational Autoencoders." Applied Sciences 10, no. 9 (2020): 3053. http://dx.doi.org/10.3390/app10093053.
Full textZhang, Jian, Jin Yuan, Chuanzhen Li, and Bin Li. "An Inverse Design Framework for Isotropic Metasurfaces Based on Representation Learning." Electronics 11, no. 12 (2022): 1844. http://dx.doi.org/10.3390/electronics11121844.
Full textAhmed, Taufique, and Luca Longo. "Interpreting Disentangled Representations of Person-Specific Convolutional Variational Autoencoders of Spatially Preserving EEG Topographic Maps via Clustering and Visual Plausibility." Information 14, no. 9 (2023): 489. http://dx.doi.org/10.3390/info14090489.
Full textKarimi Mamaghan, Amir Mohammad, Andrea Dittadi, Stefan Bauer, Karl Henrik Johansson, and Francesco Quinzan. "Diffusion-Based Causal Representation Learning." Entropy 26, no. 7 (2024): 556. http://dx.doi.org/10.3390/e26070556.
Full textLiao, Jiayu, Xiaolan Liu, and Mengying Xie. "Inductive Latent Space Sparse and Low-rank Subspace Clustering Algorithm." Journal of Physics: Conference Series 2224, no. 1 (2022): 012124. http://dx.doi.org/10.1088/1742-6596/2224/1/012124.
Full textSha, Lei, and Thomas Lukasiewicz. "Text Attribute Control via Closed-Loop Disentanglement." Transactions of the Association for Computational Linguistics 12 (2024): 190–209. http://dx.doi.org/10.1162/tacl_a_00640.
Full textWinter, Robin, Floriane Montanari, Andreas Steffen, Hans Briem, Frank Noé, and Djork-Arné Clevert. "Efficient multi-objective molecular optimization in a continuous latent space." Chemical Science 10, no. 34 (2019): 8016–24. http://dx.doi.org/10.1039/c9sc01928f.
Full textKhan, Shujaat. "Deep-Representation-Learning-Based Classification Strategy for Anticancer Peptides." Mathematics 12, no. 9 (2024): 1330. http://dx.doi.org/10.3390/math12091330.
Full textBollon, Jordy, Michela Assale, Andrea Cina, et al. "Investigating How Reproducibility and Geometrical Representation in UMAP Dimensionality Reduction Impact the Stratification of Breast Cancer Tumors." Applied Sciences 12, no. 9 (2022): 4247. http://dx.doi.org/10.3390/app12094247.
Full textRousseau, Thomas, Gentiane Venture, and Vincent Hernandez. "Latent Space Representation of Human Movement: Assessing the Effects of Fatigue." Sensors 24, no. 23 (2024): 7775. https://doi.org/10.3390/s24237775.
Full textZabihi, Mariam, Seyed Mostafa Kia, Thomas Wolfers, et al. "Nonlinear latent representations of high-dimensional task-fMRI data: Unveiling cognitive and behavioral insights in heterogeneous spatial maps." PLOS ONE 19, no. 8 (2024): e0308329. http://dx.doi.org/10.1371/journal.pone.0308329.
Full textYou, Cong-Zhe, Zhen-Qiu Shu, and Hong-Hui Fan. "Non-negative sparse Laplacian regularized latent multi-view subspace clustering." Journal of Algorithms & Computational Technology 15 (January 2021): 174830262110249. http://dx.doi.org/10.1177/17483026211024904.
Full textBjerrum, Esben, and Boris Sattarov. "Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders." Biomolecules 8, no. 4 (2018): 131. http://dx.doi.org/10.3390/biom8040131.
Full textHu, Dou, Lingwei Wei, Yaxin Liu, Wei Zhou, and Songlin Hu. "Structured Probabilistic Coding." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 12491–501. http://dx.doi.org/10.1609/aaai.v38i11.29142.
Full textSuo, Chuanzhe, Zhe Liu, Lingfei Mo, and Yunhui Liu. "LPD-AE: Latent Space Representation of Large-Scale 3D Point Cloud." IEEE Access 8 (2020): 108402–17. http://dx.doi.org/10.1109/access.2020.2999727.
Full textNguyễn, Tuấn, Nguyen Hai Hao, Dang Le Dinh Trang, Nguyen Van Tuan, and Cao Van Loi. "Robust anomaly detection methods for contamination network data." Journal of Military Science and Technology, no. 79 (May 19, 2022): 41–51. http://dx.doi.org/10.54939/1859-1043.j.mst.79.2022.41-51.
Full textLiao, Chenxi, Masataka Sawayama, and Bei Xiao. "Unsupervised learning reveals interpretable latent representations for translucency perception." PLOS Computational Biology 19, no. 2 (2023): e1010878. http://dx.doi.org/10.1371/journal.pcbi.1010878.
Full textCahani, Ilda, and Marcus Stiemer. "Mathematical optimization and machine learning to support PCB topology identification." Advances in Radio Science 21 (December 1, 2023): 25–35. http://dx.doi.org/10.5194/ars-21-25-2023.
Full textLychenko, N. M., and A. V. Sorokovaja. "Comparison of Effectiveness of Word Representations Methods in Vector Space for the Text Sentiment Analysis." Mathematical structures and modeling, no. 4 (2019): 97–110. http://dx.doi.org/10.24147/2222-8772.2019.4.97-110.
Full textReis, Eduardo, Mohamed Abdelaal, and Carsten Binnig. "Generalizable Data Cleaning of Tabular Data in Latent Space." Proceedings of the VLDB Endowment 17, no. 13 (2024): 4786–98. https://doi.org/10.14778/3704965.3704983.
Full text