Academic literature on the topic 'Représentations ⍴-adiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Représentations ⍴-adiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Représentations ⍴-adiques"
Cherbonnier, F., and P. Colmez. "Représentations p -adiques surconvergentes." Inventiones Mathematicae 133, no. 3 (August 17, 1998): 581–611. http://dx.doi.org/10.1007/s002220050255.
Full textHauseux, Julien. "EXTENSIONS ENTRE SÉRIES PRINCIPALES -ADIQUES ET MODULO DE." Journal of the Institute of Mathematics of Jussieu 15, no. 2 (August 8, 2014): 225–70. http://dx.doi.org/10.1017/s1474748014000243.
Full textWach, Nathalie. "Représentations $p$-adiques potentiellement cristallines." Bulletin de la Société mathématique de France 124, no. 3 (1996): 375–400. http://dx.doi.org/10.24033/bsmf.2285.
Full textBerger, Laurent. "Représentations p -adiques et équations différentielles." Inventiones Mathematicae 148, no. 2 (May 1, 2002): 219–84. http://dx.doi.org/10.1007/s002220100202.
Full textJaulent, Jean-François. "Représentations $l$-adiques associées aux invariants cyclotomiques." Proceedings of the Japan Academy, Series A, Mathematical Sciences 61, no. 5 (1985): 149–52. http://dx.doi.org/10.3792/pjaa.61.149.
Full textBREUIL, C. "Construction de représentations p-adiques semi-stables." Annales Scientifiques de l’École Normale Supérieure 31, no. 3 (May 1998): 281–327. http://dx.doi.org/10.1016/s0012-9593(98)80136-5.
Full textColmez, Pierre, and Jean-Marc Fontaine. "Construction des représentations p-adiques semi-stables." Inventiones mathematicae 140, no. 1 (April 2000): 1–43. http://dx.doi.org/10.1007/s002220000042.
Full textPerrin-Riou, Bernadette. "Théorie d'Iwasawa des représentations p-adiques semi-stables." Mémoires de la Société mathématique de France 1 (2001): 1–111. http://dx.doi.org/10.24033/msmf.397.
Full textAndré, Yves. "Représentations galoisiennes et opérateurs de Bessel $p$-adiques." Annales de l’institut Fourier 52, no. 3 (2002): 779–808. http://dx.doi.org/10.5802/aif.1901.
Full textCaruso, Xavier. "Représentations galoisiennes $p$ -adiques et $(\varphi,\tau)$ -modules." Duke Mathematical Journal 162, no. 13 (October 2013): 2525–607. http://dx.doi.org/10.1215/00127094-2371976.
Full textDissertations / Theses on the topic "Représentations ⍴-adiques"
Brinon, Olivier. "Représentations galoisiennes p-adiques dans le cas relatif." Paris 11, 2004. http://www.theses.fr/2004PA112007.
Full textThis work has two parts. The first one is a generalization of Sen theory to the case of a complete dicrete valuation field of mixed chacacteristics, with non perfect residue field. The second one is devoted to Fontaine's theory of crystalline and de Rham p-adic representations in the relative case. One constructs p-adic periods rings which allow us to define some sub-categories of the category of p-adic representations of the fundamental group of certain schemes, and to construct functors from the latter to categories of modules with additional structures (filtration, connexion, frobenius) satisfying simple numeric conditions. One expects this way to have an equivalence between the category of crystalline representations and the coategory of weakly admissible filtred isocrystals, that we show when the base is a fielf as in the first part
Breuil, Christophe. "Cohomologie log-cristalline et représentations galoisiennes p-adiques." Palaiseau, Ecole polytechnique, 1996. http://www.theses.fr/1996EPXX0001.
Full textDat, Jean-François. "Représentations (modulaires) de type fini de groupes p-adiques." Paris 7, 2000. http://www.theses.fr/2000PA077252.
Full textWACH, NATHALIE. "Représentations p-adiques cristallines du groupe de Galois d'un corps local." Paris 11, 1994. http://www.theses.fr/1994PA112275.
Full textPlût, Jérôme. "Espaces de Banach analytiques p-adiques et espaces de Banach-Colmez." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00448628.
Full textSchoemann, Claudia. "Représentations unitaires de U(5) p-adique." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20101.
Full textWe study the parabolically induced complex representations of the unitary group in 5 variables - U(5)- defined over a non-archimedean local field of characteristic 0. This is Qp or a finite extension of Qp ,where p is a prime number. We speak of a 'p-adic field'.Let F be a p-adic field. Let E : F be a field extension of degree two. Let Gal(E : F ) = {id, σ}. We write σ(x) = overline{x} forall x ∈ E. Let | |p denote the p-adic norm on E. Let E* := E {0} and let E 1 := {x ∈ E | x overline{x} = 1} .U(5) has three proper parabolic subgroups. Let P0 denote the minimal parabolic subgroup and P1 andP2 the two maximal parabolic subgroups. Let M0 , M1 and M2 denote the standard Levi subgroups and let N0 , N1and N2 denote unipotent subgroups of U(5). One has the Levi decomposition Pi = Mi Ni , i ∈ {0, 1, 2} .M0 = E* × E* × E 1 is the minimal Levi subgroup, M1 = GL(2, E) × E 1 and M2 = E* × U (3) are the two maximal parabolic subgroups.We consider representations of the Levi subgroups and extend them trivially to the unipotent subgroups toobtain representations of the parabolic groups. One now performs a procedure called 'parabolic induction'to obtain representations of U (5).We consider representations of M0 , further we consider non-cuspidal, not fully-induced representationsof M1 and M2 . For M1 this means that the representation of the GL(2, E)− part is a proper subquotientof a representation induced from E* × E* to GL(2, E). For M2 this means that the representation of theU (3)− part of M2 is a proper subquotient of a representation induced from E* × E 1 to U (3).As an example for M1 , take | det |α χ(det) StGL2 * λ' , where α ∈ R, χ is a unitary character of E* , StGL2 is the Steinberg representation of GL(2, E) and λ' is a character of E 1 . As an example forM2 , take | |α χ λ' (det) StU (3) , where α ∈ R, χ is a unitary character of E* , λ' is a character of E 1 andStU (3) is the Steinberg representation of U (3). Note that λ' is unitary.Further we consider the cuspidal representations of M1 .We determine the points and lines of reducibility of the representations of U(5), and we determinethe irreducible subquotients. Further, except several particular cases, we determine the unitary dual ofU(5) in terms of Langlands-quotients.The parabolically induced complex representations of U(3) over a p-adic field have been classied byCharles David Keys in [Key84], the parabolically induced complex representations of U(4) over a p-adicfield have been classied by Kazuko Konno in [Kon01].An aim of further study is the classication of the induced complex representations of unitary groupsof higher rank, like U (6) or U (7). The structure of the Levi subgroups of U (6) resembles the structureof the Levi subgroups of U (4), the structure of the Levi groups of U (7) resembles those of U (3) and ofU (5).Another aim is the classication of the parabolically induced complex representatioins of U (n) over ap-adic field for arbitrary n. Especially one would like to determine the irreducible unitary representations
Fourquaux, Lionel. "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011919.
Full textAbdellatif, Ramla. "Autour des représentations modulo p des groupes réductifs p-adiques de rang 1." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00651063.
Full textChinello, Gianmarco. "Représentations l-modulaires des groupes p-adiques : décomposition en blocs de la catégorie des représentations lisses de GL(m,D), groupe métaplectique et représentation de Weil." Thesis, Versailles-St Quentin en Yvelines, 2015. http://www.theses.fr/2015VERS045V/document.
Full textThis thesis focuses on two problems on `-modular representation theory of p-adic groups.Let F be a non-archimedean local field of residue characteristic p different from `. In thefirst part, we study block decomposition of the category of smooth modular representationsof GL(n; F) and its inner forms.We want to reduce the description of a positive-levelblock to the description of a 0-level block (of a similar group) seeking equivalences of categories.Using the type theory of Bushnell-Kutzko in the modular case and a theorem ofcategory theory, we reduce the problem to find an isomorphism between two intertwiningalgebras. The proof of the existence of such an isomorphism is not complete because itrelies on a conjecture that we state and we prove for several cases. In the second part wegeneralize the construction of metaplectic group and Weil representation in the case ofrepresentations over un integral domain. We define a central extension of the symplecticgroup over F by the multiplicative group of an integral domain. We prove that it satisfiesthe same properties as in the complex case
Hauseux, Julien. "Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112411/document.
Full textThis thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series
Books on the topic "Représentations ⍴-adiques"
Perrin-Riou, Bernadette. Théorie d'Iwasawa des représentations p-adiques semi-stables. Paris: Société Mathématique de France, 2001.
Find full text1976-, Berger Laurent, Breuil Christophe, and Colmez Pierre, eds. Représentations p-adiques de groupes p-adiques I: Représentations galoisiennes et ([phi, gamma])-modules. Paris, France: Société mathématique de France, 2008.
Find full textBook chapters on the topic "Représentations ⍴-adiques"
Serre, Jean-Pierre. "Représentations l-adiques." In Oeuvres - Collected Papers III, 384–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-39816-2_112.
Full textPerrin-Riou, B. "Représentations p-Adiques, Périodes et Fonctions L p-Adiques." In Progress in Mathematics, 213–58. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-5788-2_11.
Full textPerrin-Riou, B. "Représentations p-Adiques, Périodes et Fonctions L p-Adiques." In Séminaire de Théorie des Nombres, Paris 1987–88, 213–58. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4612-3460-9_11.
Full textVignéras, Marie-France. "Représentations p-adiques de torsion admissibles." In Number Theory, Analysis and Geometry, 639–46. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-1260-1_27.
Full textFontaine, Jean-Marc. "Représentations p-adiques des corps locaux (1ère partie)." In The Grothendieck Festschrift, 249–309. Boston, MA: Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4575-5_6.
Full textSerre, Jean-Pierre. "Propriétés Conjecturales des Groupes de Galois Motiviques et des Représentations ℓ-Adiques." In Springer Collected Works in Mathematics, 325–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-41978-2_29.
Full textMœglin, Colette, Marie-France Vignéras, and Jean-Loup Waldspurger. "Représentations métaplectiques et conjecture de Howe." In Correspondances de Howe sur un corps p-adique, 27–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082714.
Full textMœglin, Colette, Marie-France Vignéras, and Jean-Loup Waldspurger. "Représentations de petit rang du groupe symplectique." In Correspondances de Howe sur un corps p-adique, 127–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0082718.
Full textDelorme, Patrick. "Espace des coefficients de représentations admissibles d’un groupe réductif p-adique." In Noncommutative Harmonic Analysis, 131–76. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8204-0_6.
Full text