Academic literature on the topic 'Representations of quivers (Matematics)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Representations of quivers (Matematics).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Representations of quivers (Matematics)"

1

Hügeli, Lidia, and Sverre Smalø. "Real representations of quivers." Colloquium Mathematicum 81, no. 2 (1999): 293–97. http://dx.doi.org/10.4064/cm-81-2-293-297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weist, Thorsten, and Kostyantyn Yusenko. "Unitarizable Representations of Quivers." Algebras and Representation Theory 16, no. 5 (2012): 1349–83. http://dx.doi.org/10.1007/s10468-012-9360-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bruyn, Lieven Le, and Claudio Procesi. "Semisimple Representations of Quivers." Transactions of the American Mathematical Society 317, no. 2 (1990): 585. http://dx.doi.org/10.2307/2001477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hille, Lutz, and José Antonio de la Peña. "Stable representations of quivers." Journal of Pure and Applied Algebra 172, no. 2-3 (2002): 205–24. http://dx.doi.org/10.1016/s0022-4049(01)00167-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schofield, Aidan. "General Representations of Quivers." Proceedings of the London Mathematical Society s3-65, no. 1 (1992): 46–64. http://dx.doi.org/10.1112/plms/s3-65.1.46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Sangwon. "Projective representations of quivers." International Journal of Mathematics and Mathematical Sciences 31, no. 2 (2002): 97–101. http://dx.doi.org/10.1155/s0161171202108192.

Full text
Abstract:
We prove thatP1 →f P2is a projective representation of a quiverQ=•→•if and only ifP1andP2are projective leftR-modules,fis an injection, andf (P 1)⊂P 2is a summand. Then, we generalize the result so that a representationM1 →f1 M2 →f2⋯→fn−2 Mn−1→fn−1 Mnof a quiverQ=•→•→•⋯•→•→•is projective representation if and only if eachMiis a projective leftR-module and the representation is a direct sum of projective representations.
APA, Harvard, Vancouver, ISO, and other styles
7

Le Bruyn, Lieven, and Claudio Procesi. "Semisimple representations of quivers." Transactions of the American Mathematical Society 317, no. 2 (1990): 585–98. http://dx.doi.org/10.1090/s0002-9947-1990-0958897-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Sang-Won, and De-Ra Shin. "INJECTIVE REPRESENTATIONS OF QUIVERS." Communications of the Korean Mathematical Society 21, no. 1 (2006): 37–43. http://dx.doi.org/10.4134/ckms.2006.21.1.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Berg, Carl Fredrik, and Adam-Christiaan van Roosmalen. "Representations of thread quivers." Proceedings of the London Mathematical Society 108, no. 2 (2013): 253–90. http://dx.doi.org/10.1112/plms/pdt021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Oyonarte, Luis. "COTORSION REPRESENTATIONS OF QUIVERS." Communications in Algebra 29, no. 12 (2001): 5563–74. http://dx.doi.org/10.1081/agb-100107946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!