Dissertations / Theses on the topic 'Réseaux de Capteurs Sans Fil (RCSF)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Réseaux de Capteurs Sans Fil (RCSF).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bennis, Ismail. "Contribution aux protocoles de routage dans les réseaux de capteurs sans fil : Application à la supervision agricole." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS012/document.
Full textWireless Sensor Networks (WSNs) have aroused great scientific interest during the last decade. One of the greatest challenge of WSNs is to ensure communication with the Quality of Service (QoS) required by the application while taking into account the inherent constraints of the sensor nodes. Another challenge is related to the generation of heterogeneous traffic with different priorities, which imposes additional constraints on different communication protocols. In this thesis, we are interested specifically to routing protocols dedicated to WSNs. First, we propose improvements of protocols based on combinatorial optimization techniques and those based on nodes geographic positions to overcome the related constraints of WSNs. Secondly, we propose a solution to address the vulnerability of the multiple paths technique, whether for the case of a single source or several sources in the network. Thus, our main contribution is to provide a multi-path routing protocol, able to creating paths while avoiding the carrier sense range effect. This protocol denoted "Carrier Sense Aware Multipath Geographic Routing (CSA-MGR)" meets the QoS required by WSNs. As direct application of our solution, we studied a drip irrigation scenario using WSNs. Mainly, we studied the case where a system dysfunctioning occurs, such as irrigation pipe rupture or the emitters blocking. Also, we distinguish two priority levels for the data transmitted over the network, and based on the CSA-MGR, we design routing according to the required priority. Our work in this thesis has been validated through NS2 and TOSSIM simulators and also through a real implementation over the TelosB motes. The results of numerical simulations and experimental results show the advantage of our contributions compared to existing solutions
Ben, Ammar Amira. "Approche cross-layer pour la minimisation d’énergie dans les réseaux de capteurs sans fil." Thesis, Paris, CNAM, 2018. http://www.theses.fr/2018CNAM1191/document.
Full textWireless sensor networks (WSN) can be defined as an ad hoc network consisting of miniaturized autonomous entities, called sensor nodes which communicate with each other over a radio link. WSNs is a research topic which has gained a lot of interest due, in particular, to new routing problems under low node capacity and high network lifetime constraints.WSNs differ from wired networks in their characteristics and limitations which have motivated the development of a new cross-layer design that ignores certain paradigms of the classical approach allowing the mutual exchange of information even between non-adjacent layers. This approach, which is not yet standardized, has gained a lot of attention through several works aiming to energy consumption minimization under a required QoS (Quality of Service).In this thesis, our contributions can be classified are twofold according to the considered routing strategy namely the ad-hoc routing and clustering based routing.In the first part, we propose a new adaptable and extensible cross-layer design called XL-AODV (Cross Layer AODV) based on the exchange of the SNR (Signal-to-Noise-Ratio) between the network and the physical layer which has been modelled by the K distribution.We evaluate under the NS2 simulator, the performance of XL-AODV. A comparative analysis with AODV, showed for different network configurations, the efficiency of our proposition in terms of energy saving and end-to-end latency.In the second part, we propose an XL-LEACH approach which is an improvement of the original version of LEACH by its adapting to dense and large scale sensor networks. We have also taken into account the characteristics of the physical layer modelled by the K distribution.In a third part, XL-CLEACH (XL Cooperative LEACH) approach is introduced to improve XL-LEACH by integrating the cooperative communication at the MAC layer.We have proved through an analytical study and validated by simulations, the gain in terms of energy consumption, network lifetime and SER (Symbol Error Rate). The XL-LEACH and XL-CLEACH architecture were implemented under MATLAB
Aoudia, Hania. "Approches de routage adaptatif pour l'optimisation de la consommation énergétique dans les applications type RCSF." Thesis, Paris 8, 2015. http://www.theses.fr/2015PA080077/document.
Full textManaging energy consumption is an unavoidable issue for a WSN design and implementation. Focusing lonely on a hardware solution to ensure an efficient of a running network while increasing its lifetime remains insufficient. It is therefore necessary to turn towards other software solutions that enable a better control of information processing from its source until its final destination by taking into account intrinsic characteristics of sensors, such as low storage and computing capabilities and associated energy constraints. A partial response to these needs requires the development of IT tools and protocolar strategies in low-power modes by implementing mechanisms based on information routing techniques. In this thesis, we propose and develop two hierarchized protocolar solutions HHRP and HRP-DCM. The first one implements an adaptive routing mechanism based on a nonlinear energy model and a concept of communication Son-Parent for a best paths selection by taking into account a set of critical parameters such as distance source-target, signal strength and energy consumption. However, the vicinity recognition phase requires the use of RSSI radio signals to estimate distances between sensor nodes. This can be considered as a major drawback since it may cause damage on routing performances and estimation error on RSSI measurements. These latters can be used for locating nodes only after a while since the stability of RSSI signal is guaranteed only belatedly Thus, the allocated time for recognition phase becomes significant, speeding up thereby energy consumption and thus reduces the lifetime of the network. In this context, we propose an alternative that bypasses the use of RSSI power signal in different levels of HHRP mechanism by implementing a hybrid routing approach based on a dynamic clustering mechanism HRP-DCM. This solution allows improvements in recognition and in paths optimization phases, both. It uses the concept of temporal distances calculation during network deployment. Thus, allocated time for network initialization is shortened mitigating in fact energy consumption and resources exploitation. Performance evaluation shows that HRP-DCM optimizes better network whatever its density compared to other solutions such as HHRP, TEEN and LEACH routing protocols
Gogu, Ada. "Dimensionnement des réseaux RCSF sous des contraintes énergétiques : modèles mathématiques et méthodes d'optimisation." Compiègne, 2012. http://www.theses.fr/2012COMP2028.
Full textIn this thesis, we focused on the development of optimal methods regarding WSN dimensioning problems, mostly encountered during the planning phase. These were instantiated basically into three combinatorial optimization problems. The network deployment scheme which seeks to place the sensors in a such way that the cost of communication operations is minimized. The network configuration problem that asks to find a strategy for dividing the network such that some criteria are satisfied. In the problem’s model we took into account the data aggregation constraint and the discrete values of power transmission. For both problems we proposed a resolution method, based on dynamic programming, which permitted us to solve them optimally. Finally, the joint problem of scheduling and power assignment, consisted in finding a feasible scheduling under SINR constraints and a power assignment scheme to guarantee successful concurrent transmissions. As the problem is shown to be NP-hard we propose a greedy heuristic. The resolution method for the power assignment strategy, an iterative algorithm based on linear programming, provides optimal solutions
Rault, Tifenn. "Energy-efficiency in wireless sensor networks." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2228/document.
Full textIn this thesis, we propose new strategies for energy conservation in wireless sensor networks, so that the operational time of these networks can be extended. The work can be divided into two main focus area, namely general wireless sensor networks, and healthcareoriented wearable sensor networks. In the first part of this thesis we provide a comprehensive survey of the existing energy-efficient mechanisms. Then, we propose two new solutions: the first one optimizes the displacement of a mobile base station as well as buffer usage and data routing at sensor nodes; the second one optimizes the deployment of wireless chargers in the network to satisfy the energy demand of the sensors. The second part of this thesis is dedicated to healthcare application where wearable sensors are used to remotely supervise a patient. We begin with a state-of-the-art of the energy-efficient techniques existing in the literature. We then introduce a new energy-efficient architecture that allows to optimize the lifetime of both the sensor and the base station. This is a context-aware solution that takes into consideration heterogeneous devices. Our results show that the lifetime of the sensor networks can be extended using the proposed strategies. All the results obtained are supported by numerical experiments and extensive simulations
Benatia, Mohamed Amin. "Optimisation multi-objectives d’une infrastructure réseau dédiée aux bâtiments intelligents." Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0024/document.
Full textIn this thesis, we studied the Wireless Sensor Network deployment for indoor environments with a focus on smart building application. The goal of our work was to develop a WSN deployment tool which is able to assist network designers in the deployment phase. We begin this thesis with network modeling of all the deployment parameters and requirement, such as : cost, coverage, connectivity and network lifetime. Thereafter, we implement five optimisation methods, including three multi-objective optimization agorithms, to resolve WSN deployment problem. Then, two realistics study cases were identified to test the performances of the aforementioned algorithms. The obtained results shows that these algorithms are very efficient for deploying a small scale network in small buildings. However, when the building surface becomes more important the algorithms tends to converge to local optimum while consuming high processing time. To resolve this problem, we develop and implement a new Hybrid multi-objectif optimization algorithm wich limits the number of direct evaluation. This algorithm is based on data-mining methods (Artificial Neural Networks and K-means) and tries to approximate the fitness value of each individual in each generation. At every generation of the algorithm, the population is divided to K clusters and we evaluate only the closest individual to cluster centroide. The fitness value of the rest of population is approximated using a trained ANN. A comparative study was made and the obtained results show that our method outperformes others in the two sudy cases (small and big buildings)
Maalel, Nourhene. "Reliability in wireless sensor networks." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1944/document.
Full textOver the past decades, we have witnessed a proliferation of potential application domainsfor wireless sensor networks (WSN). A comprehensive number of new services such asenvironment monitoring, target tracking, military surveillance and healthcare applicationshave arisen. These networked sensors are usually deployed randomly and left unattendedto perform their mission properly and efficiently. Meanwhile, sensors have to operate ina constrained environment with functional and operational challenges mainly related toresource limitations (energy supply, scarce computational abilities...) and to the noisyreal world of deployment. This harsh environment can cause packet loss or node failurewhich hamper the network activity. Thus, continuous delivery of data requires reliabledata transmission and adaptability to the dynamic environment. Ensuring network reliabilityis consequently a key concern in WSNs and it is even more important in emergencyapplication such disaster management application where reliable data delivery is the keysuccess factor. The main objective of this thesis is to design a reliable end to end solution for data transmission fulfilling the requirements of the constrained WSNs. We tackle two design issues namely recovery from node failure and packet losses and propose solutions to enhance the network reliability. We start by studying WSNs features with a focus on technical challenges and techniques of reliability in order to identify the open issues. Based on this study, we propose a scalable and distributed approach for network recovery from nodefailures in WSNs called CoMN2. Then, we present a lightweight mechanism for packetloss recovery and route quality awareness in WSNs called AJIA. This protocol exploitsthe overhearing feature characterizing the wireless channels as an implicit acknowledgment(ACK) mechanism. In addition, the protocol allows for an adaptive selection of therouting path by achieving required retransmissions on the most reliable link. We provethat AJIA outperforms its competitor AODV in term of delivery ratio in different channelconditions. Thereafter, we present ARRP, a variant of AJIA, combining the strengthsof retransmissions, node collaboration and Forward Error Correction (FEC) in order toprovide a reliable packet loss recovery scheme. We verify the efficiency of ARRP throughextensive simulations which proved its high reliability in comparison to its competitor
Farhat, Ahmad. "Use of Wireless Sensor Networks for Operational Safety and Industrial Prognosis." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD046/document.
Full textEffective maintenance of an industrial device can only be based on the reliability and accuracy of physical data captured on said device for monitoring purposes. In some cases, monitoring of such industrial systems or areas to be monitored can not be ensured by individual or wire sensors, for example due to access problems or hostile environments. Wireless Sensor Networks (RCSF) are an alternative. Due to the nature of the communications in these networks, and the characteristics of the devices making up the latter, an RCSF is at high risk of failures at the sensors, and in this case the loss of various data is likely - problematic for the monitoring of the device. To study the relevance of the RCSF to the so-called Prognostic and Health Management (PHM) process used to determine the maintenance plan for a device to be monitored, and the impact of the various strategies deployed in the latter on the latter, proposed a first efficient diagnostic algorithm and used it in a simulated RCSF to measure its performance (this simulator being a program that we developed)
Diao, Xunxing. "A resource-aware embedded commucation system for highly dynamic networks." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00715649.
Full textBekkaoui, Otmane. "Réseaux de capteurs d'hydrogène passifs sans fil." Thèse, Université du Québec à Trois-Rivières, 2013. http://depot-e.uqtr.ca/6139/1/030426241.pdf.
Full textMezni, Anis. "Ordonnancement des réseaux de capteurs sans fil embarqués." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI030.
Full textWireless Sensor networks are attracted many activities of research and development during the last decade. Yet, the distributed behavior of a WSN remains centered on two main objectives: sensing and routing. This thesis advocates the introduction of an additional feature, which can be considered interesting from a functional point of view and potentially from the power consumption one: starting from a designer-specified requirement, implement a multiple level synergy between (groups of) nodes, based on adequate interaction. This is achieved by automatic generation and distribution of correct-by-construction code, relying on the Supervisory Control Theory. The Discrete Controller Synthesis (DCS) technique is an application of this theoretic framework. In this thesis, we show how DCS can be used for WSN. Thus, its potential is at two levels. The intra-cluster scheduling of a redundant group of sensors with specifications expressing the mutual exclusion during the activation of a sensor within a cluster, essential to save the energy within the network and then a multicriteria automatic generation of an optimal routing functionality. Specifically, an optimal path should have both a minimal length and go through nodes having maximal residual energy. The cited formal tools lean on a modelling approach based on communicating finite state machines (CFSM). The scientific challenges are generally related to the nature of the WSN as well as to its size. The DCS can only generates a monoblock controllers, while the WSN’s behavior is essentially distributed. The issue is how to distribute a global controller, who appears in the form of a logical constraint expressed on the global state of the network, into local controllers while adding the necessary synchronization to guarantee a distributed functioning equivalent to the initially generated controller
Bramas, Quentin. "Réseaux de capteurs sans fil efficaces en énergie." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066309/document.
Full textA wireless sensor network is an ad-hoc network connecting small devices equipped with sensors. Such networks are self-organized and independent of any infrastructure. The deployment of a WSN is possible in areas inaccessible to humans, or for applications with a long lifetime requirement. Indeed, devices in a wireless sensor network are usually battery-powered, tolerate failure, and may use their own communication protocols, allowing them to optimize the energy consumption. The main application of WSNs it to sense the environment at different locations and aggregate all the data to a specific node that logs it and can send alerts if necessary. This task of data aggregation is performed regularly, making it the most energy consuming. As reducing the energy consumed by sensor is the leading challenge to ensure sustainable applications, we tackle in this thesis the problem of aggregating efficiently the data of the network. Then, we study lifetime evaluation techniques and apply it to benchmark existing energy-centric protocols
Munir, Muhammad Farukh. "Optimisation inter-couche de réseaux de capteurs et capteurs-actionneurs sans fil." Paris, ENST, 2009. http://www.theses.fr/2009ENST0039.
Full textMabrouki, Issam. "Marches aléatoires dans les réseaux de capteurs sans-fil." Télécom Bretagne, 2008. http://www.theses.fr/2008TELB0081.
Full textMakkaoui, Leila. "Compression d'images dans les réseaux de capteurs sans fil." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00795503.
Full textDu, Wan. "Modélisation et simulation de réseaux de capteurs sans fil." Phd thesis, Ecole Centrale de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00690466.
Full textLeone, Rémy. "Passerelle intelligente pour réseaux de capteurs sans fil contraints." Thesis, Paris, ENST, 2016. http://www.theses.fr/2016ENST0038/document.
Full textLow-Power and Lossy Network (LLN)s are constrained networks composed by nodes with little resources (memory, CPU, battery). Those networks are typically used to provide real-time measurement of their environment in various contexts such as home automation or smart cities. LLNs connect to other networks by using a gateway that can host various enhancing features due to its key location between constrained and unconstrained devices. This thesis shows three contributions aiming to improve the reliability and performance of a LLN by using its gateway. The first contribution introduce a non-intrusive estimator of a node radio usage by observing its network traffic passing through the gateway. The second contribution offers to determine the validity time of an information within a cache placed at the gateway to reduce the load on LLNs nodes by doing a trade-off between energy cost and efficiency. Finally, we present Makesense, an open source framework for reproducible experiments that can document, execute and analyze a complete LLN experiment on simulation or real nodes from a unique description
Ramassamy, Cédric. "Analyse des protocoles des réseaux de capteurs sans-fil." Thesis, Antilles-Guyane, 2012. http://www.theses.fr/2012AGUY0586/document.
Full textWireless sensor networks is one of the hotest research topic in the last few years. This technology can be applied for different fields such as environment, industry, trading, medicine, military etc. Wireless sensor networks are hard to conceive because they require a lot of energy and because each of its component may have an influence on the lifetime of the whole system. What we suggest is a tool allowing to choose the correct and optimal parameters for the reliability of the applications.In this thesis, we focused on two major problems : firstly, a classification of the parameters for a tool allowing to make decisions about the configuration of a wireless sensors network, and secondly, a tool testing the compliance of the system with a real environment. The document is divided into two parts : the first part states the different protocols that exist, and the second part describes our contributions to those topics.In the first contribution, we analyzed how influential the radio cover and the network topology are on the network performances. Then, we deduced from the study of the loss rate and of the level of energy, the reliability of the application. Next, we suggested a study leading to a classification for our decision making tool. For this classification, we studied various parameters related to the MAC layer, the Physical layer, the network layer, the application layer the number of nodes involved in the network.In the second contribution, we adopted a pragmatic approach so we could test the conformity of a wireless sensors network in a real environment. In order to test its conformity in a real environment, we suggested a structured test execution on a real wireless sensor network. This task has been suggested in order to check the conformance level of the network while it was working
NICOLAS, Charbel. "Sur l'adaptation au contexte des réseaux de capteurs sans fil." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00762223.
Full textCorbellini, Giorgio. "MAC adaptatif pour les réseaux de capteurs sans fil hétérogènes." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771767.
Full textChamp, Julien. "Communication et Localisation dans les réseaux de capteurs sans-fil." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20133.
Full textRecent advancements in the fields of telecommunications and miniaturization make it possible to deploy for a reasonnable cost, autonomous communicating objects in order to collect environmental data, or to respond when a given event appears in the deployment area. Due to the emergence of these new kind of ad hoc networks, it is needed to design various new protocols, adapted to the constraints of considered objects and to the specific needs of targeted applications.During this thesis, the objective was to contribute to the field of wireless sensor networks by proposing solutions for some of the most important issues. In the first part of this document, dedicated to communication problems, we study and propose a new energy efficient geographical routing mechanism which overcomes the periodic exchange of HELLO messages, often required to determine sensors neighborhood. We also extend this method when considering the presence of location errors of sensors. Next, we have studied a strategy to enhance the lifetime of the network when periodic queries must be sent from the base station to the whole network, by adapting an efficient localized broadcast algorithm, in order to balance energy consumption between nodes. Additionally we have shown that it is not necessary to recompute the broadcast trees for each query to obtain a good lifetime.In the second part of this document, we considered the localization problem in wireless multihop networks. After a study of some of the most interesting solutions in the litterature, we propose a new family of localization methods which are well suited for wireless sensor networks, using 2-hop information and force-based algorithms. Through extensive simulations we show the scalabity of our method, and its ability to obtain accurate results, even when considering complex topologies or the presence of large measurement errors
Nicolas, Charbel. "Sur l'adaptation au contexte des réseaux de capteurs sans fil." Thesis, Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0037/document.
Full textBeing mobile, the wireless sensors must adapt to the changing environment. Therefore, in the first part of this thesis we propose a mechanism to adapt the WSN architecture dynamically based on the detected context; this includes the dynamic detection of the topology change, the detection of the new context and consequently the dynamic adaptation of the communication layer. All of these actions are executed under constraints on energy consumption. The work done in this part poses the question of detecting the new context. This is a rather difficult question because it is unclear. The purpose of the second part is to detect on the fly the type of the competitor technology generating a traffic that interferes with the WSN. The proposed mechanism, FIM, identifies the cause of interference from errors model observed in the corrupt data packets. The context detection allows the nodes of the sensor network to obtain information about the environment. Some nodes must have more reliable information on the environment than others. How to retrieve the information? From which neighboring nodes? And what information to keep as safe and useful? Are the questions that are addressed in the third part. We propose a mechanism to dynamically decide if docition mechanisms should be used or not
Benamrouche, Bilal. "Efficacité énergétique des architectures de communication sans fil IR-UWB pour les réseaux de capteurs sans fil." Thesis, Toulouse, INSA, 2018. http://www.theses.fr/2018ISAT0023/document.
Full textThis Ph.D. Subject proposes the design of a new generation of wireless sensor networks (WSN) based on impulse radio ultra-wide band (IR-UWB), reconfigurable upon the application, reliable and ultra-low power. Applications like structure health monitoring of aerospace structures or portable smart sensing systems for human protection can be targeted. These industrial applications impose very demanding specifications for the wireless communication protocol (in some cases, new services are needed like: localization, clock synchronization, real-time transmission, etc) on one side, and for the circuit design, on the other side, as the ultra-low power circuits are needed. Energy efficiency is the major driver in today development of the wireless sensor networks. We chose impulse radio ultra-wideband (IR-UWB) technique for our developments. IR-UWB is a very promising technique able to respond to the wireless communication protocol constraints and to energy efficiency constraints.! The objective of this Ph.D. will be to design an ultra-low power IR-UWB transceiver. IR-UWB signal processing techniques has to be study and innovator solution has to be proposed for the implementation of the IR-UWB transceiver. The first prototype will be developed on FPGA boards (and/or USRP boards) and the final IR-UWB transceiver will be an ASIC in CMOS technology. The design of an ultra-low power consumption of the CMOS transceiver will be a major concern. Modern ultra-low power circuit techniques from the nanometrics CMOS design kits will be used. MAC layer adapted to the demands of the application and working on IR-UWB physical layer will be also studied and designed. A microprocessor integration on the chip for power management of the different parts (sensor, communication, computing, energy harvesting) of the system can also be studied. This work will be based on the previous research results obtained in our team in the case of static WSN. This work will take plac! e in the highly stimulating and competitive environment of a E! uropean project
Salhi, Ismail. "Un codage réseau contraint pour les réseaux de capteurs sans fil." Phd thesis, Université Paris-Est, 2012. http://pastel.archives-ouvertes.fr/pastel-00794618.
Full textRoth, Damien. "Gestion de la mobilité dans les réseaux de capteurs sans fil." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00793315.
Full textLucas, Pierre-Yves. "Modélisations, Simulations, Synthèses pour des réseaux dynamiques de capteurs sans fil." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0114/document.
Full textThe integration of environment and information systems is progressing quickly since 10 years. This allows to monitor natural, physical or societal evolutions; to capture their logic and sometimes to control their effects. This integration is feasible thanks to many technical and scientific progresses: sensors, wireless communications, system on chips, batteries, distributed systems and geo-localization. The benefits are important for climate change monitoring and resource savings.In this context, we have firstly achieved a learning of technologies and several practical system realizations. We have produced a navigation software (QuickMap) allowing to interface gis databases and tile servers similar to OpenStreetMap, taking care of sensor locations and outputs. QuickMap is also a nice frontend to produce cellular systems oriented to physical simulations.Using the NetGen platform, we have produced a simulation framework allowing to schedule mobile moves with sensor field activities. A case study was leo satellites visiting remote sensor systems, with investigations on two algorithms suitable for data collection and control.Finally we have addressed the question of observation system virtualization by using an high level, process oriented virtual machine (tvm) to control the wireless link, a step forward to make the distributed and local behaviours homogeneous in terms of programming and simulation.Many of our developments are currently involved in active projects.This thesis was funded by a grant of Brest Metropole Oceane (BMO) and was achieved in a wireless research group at University of Brest, Lab-STICC laboratory
Messai, Sarra. "Gestion de la mobilité dans les réseaux de capteurs sans fil." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1183.
Full textWireless Sensor Networks (WSNs) are increasingly invading our lives. With the rise of Internet of Things (IoT), WSNs are used in applications that require observation of the physical world and data collection. However, many obstacles inherent to the specificities of WSNs must be overcome before reaching the maturity of this technology. Among these obstacles, the resource limitations such as energy, computing capability, bandwidth and storage capability of sensor nodes. In this thesis, we focus on mobility management as a solution to improve network performance in terms of energy consumption and optimization of data collection. A mobile wireless sensor network is a network in which at least the base station is mobile.We first looked at the case where only the base station is mobile. In this context, we proposed a network organization that leverages base station mobility to optimize data collection while reducing the dissipated energy by sensor nodes. The proposed organization is based on a grid architecture and an optimized base station mobility algorithm for collecting data. We implemented our solution in the NS-2 simulation environment. The obtained simulation results show clearly the improvement of our proposal compared to other existing approaches. Then we looked at the case where the mobility is total, in other words, each sensor node in the network can be mobile. In this case, we worked on the issue of key management to ensure the security of data collection. In this context, we proposed a new key management scheme based on the random key pre-distribution. Our solution has the particularity of ensuring the self-healing of the network where sensor nodes are compromised. We evaluated and implemented our solution and compared it with two other reference schemes to show its effectiveness
Audeoud, Henry-Joseph. "Routage efficace et garanti dans les réseaux de capteurs sans fil." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM055.
Full textThe wireless sensor networks that we work with in this thesis are a set of devices connected to eachother by low-rate and low-power technologies. Their role is to produce measures on the physical environ-ment around them (meteorological and climate condition tracking, monitoring of industrial installations,control of distribution grids, topographical surveillance. . . ). These measures must then be collected out ofthe network. Since the sensors have short range radios, transmissions are multi-hop, the sensors close tothe destination relaying the information transmitted by those which are further away from it. Because ofthe movement of the nodes themselves or of objects in their environment interfering with wireless commu-nications, the exact topology of the network is subject to change. In addition, the battery-powered sensorsare limited in energy and therefore in transmission abilities. The power-saving techniques applied to turnoff the radio most of the time impose synchronization constraints.To route information through the network, the routing protocol establishes routes, so that the sensorscan relay information from and to the network border router through reliable links leading to the destina-tion through short paths. Due to sensor limitations, the routing must be energy efficient, i.e. the overloadof the radio transmissions involved by the routing algorithm itself must be as lightweight as possible. Itmust also be able to restore connectivity on a network topology change without creating routing loops thatnegatively impact the quality of service and the energy reserves of the nodes.This document describes a routing protocol that meets these objectives. It is capable of creating a self-healing collection tree that extracts information out of the network, as well as from the routes to distributecommand messages or acknowledgment to the nodes. It also validates the data path of each packet toensure that they never enter a routing loop. The protocol is run in simulations and also on real platformexperiments, showing the effectiveness of the proposed mechanisms.In order to improve its ability to choose the best available links, I also propose the use of a new esti-mation of their quality. It is based on two complementary measurements: a long-term measurement ofthe ambient noise level on the radio channel, and a measurement of the power of the signal received fromthe transmitter. These two measurements provide an estimate of the signal-to-noise ratio, and thereby theexpected reception rate. This estimate is both accurate, quick to obtain, and adapted to the constraints ofsensors and networks we are talking about
Zayani, Hafedh. "Etude et optimisation des protocoles de réseaux de capteurs sans fil." Paris, CNAM, 2009. http://www.theses.fr/2009CNAM0953.
Full textLes travaux présentés dans cette thèse portent sur la mise en place de nouveaux protocoles économiseurs d’énergie pour les réseaux de capteurs sans fil (RCSF). Suite à une analyse approfondie des principaux travaux de recherches sur ce sujet, nous avons proposé de nouveaux protocoles multicouches de routage et de contrôle d’accès au medium (ECo-MAC) permettant d’augmenter de manière significative la durée de vie des ces réseaux. Après la conception de deux modèles génériques de nœuds : « capteur » et « station de base », nous évaluons sous le simulateur OPNET les performances de ces nouvelles propositions. Une analyse comparative avec des travaux de référence, a montré pour différentes configurations de réseaux, l’efficacité de nos propositions en termes de gains énergétiques et de latence de bout en bout. Dans une seconde étape, après description des activités des nœuds du réseau par des automates temporisés, nous avons, à l’aide de l’outil UPPAAL, vérifié le comportement du protocole MAC et justifié formellement les valeurs adoptés en phase de simulation de certains paramètres, en particulier la durée d’un time slot. Dans une dernière étape, partant d’une modélisation de la procédure backoff de notre protocole ECo-MAC basée sur les chaînes de Markov à temps discret, et à l’aide de l’environnement de vérification probabiliste PRISM, nous justifions les choix que nous avons retenus pour les valeurs de certains paramètres intégrés dans cette procédure
Miao, Huifang. "Connectixité, forte orientation des graphes et réseaux de capteurs sans fil." Paris 11, 2008. http://www.theses.fr/2008PA112095.
Full textThis thesis is mainly about some parameters of graphs--connectivity, strong distance, the orientation of graphs and some applications in wireless sensor networks. In Chapter 2, we model that each sensor nodes monitors exact one target. We present the disjoint sets coverage and connectivity problem, and prove it is NP-complete. In Chapter 3, we consider the wireless sensor networks satisfying that each node monitors one target or just for connection. Assume G is l(k-1)+1-connected, then we can find k (the maximum number) disjoint sets each of which completely covers all the targets and remains connected to one of the central processing nodes. And we also give the related algorithms to find the k disjoint sets. In Chapter 4, based on the model described in Chapter 3, assume the working time of the node only for connection is d times as the one both for monitoring and connection. We show that it is NP-complete to attain energy efficiency. An algorithm is designed for it. Chapter 5 is about the strong distance in oriented complete k-partite graphs. In Chapter 6, we determine the lower orientable strong radius and diameter of complete k-partite graphs, and give the upper orientable strong diameter and the bounds on the upper orientable strong radius of complete k-partite graphs. In Chapter 7, we show that each complete k-partite graph has an optimal strong (k, d)-orientation
Hadjidj, Abdelkrim. "Réseaux de capteurs sans fil pour la supervision des systèmes critiques." Compiègne, 2012. http://www.theses.fr/2012COMP2044.
Full textBoumerzoug, Hayette. "Gestion de la sécurité dans les réseaux de capteurs sans fil." Thèse, Université du Québec à Trois-Rivières, 2011. http://depot-e.uqtr.ca/5174/1/030329315.pdf.
Full textDihissou, Akimu Ayan Niyi. "Système antennaire directif et reconfigurable pour réseaux de capteurs sans fil." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4013/document.
Full textStudies have shown that the communication subsystem is one of the greatest sources of energy consumption in wireless sensor networks. This subsystem is directly bounded to the type of antenna used on the radio module. Several sensor nodes are equipped with omnidirectional antennas leading to a waste of energy due to the shape of their beam. Instead of using omnidirectional antennas, directive and reconfigurable antennas system dedicated to wireless sensor networks are presented in this work so as to alleviate the waste of energy. On one hand, such dedicated antennae should be small in size and particularly designed by taking into consideration the frequency bandwidth of the node. On the other hand, their radiation pattern should also be reconfigurable by using powerless active components with a simple active control. To reach these objectives, we have in a first time proposed a directive solution inspired of a Printed-Yagi antenna in the ISM band (2.4-2.485) GHz. It provides high gain with a value of 7.3dB and a half power beam width BW−3dB of 57° in the azimuth plane. Secondly, we have proposed a multiple directional antenna in the ISM band. This antenna consists of six identical monopole antennas arranged in the same structure, having each one feeding port. Due to the selection of each feeding port, the proposed antenna covers the whole azimuthal plane with a simulated beam of 4.6 dB along with a half power beam width BW−3dB of 55°. Moreover, an electronic card equipped with an SP6T switch dedicated to that antenna has been developed to control the radiation pattern of the six identical antennas automatically. Willing to reduce the number of radiating elements while enhancing the radio performance, a third antenna has been proposed. It consists of a fed monopole and a loaded parasitic one having an inductance component of 9.6nH. The nature and the value of this inductance are obtained using the Uzkov equations that calculate the current weighting coefficients in the case of two separately fed antennas to maximize the gain and the directivity in the desired direction. Contrary to the use of electronic card in the control of radiation pattern prior to the conception of the third antenna, the reconfigurable aspect is obtained by using reflectors and director’s elements activated by PIN diodes. It offers a maximum gain of 5.2 dB in simulation at 2.4GHz along with a half power beam width BW−3dB of 52°, in both the 270° and +90° azimuthal directions depending on the selection of the set of PIN diodes. Finally, a straight application of this structure has been proposed in order to cover more than two directions in the azimuth plane. It is an array of four monopole antennas in which two of them are fed and the two others are loaded. Such antenna is capable to steer its radiation pattern in the azimuth plane covering 360° directions (0°, 90°, 180° and 270°). The achieved simulated realized total gain is 4 dB for each radiation pattern in the azimuth plane along with a half power beam width of about 60°. Measurement campaign test has been carried out for each proposed antenna in this work. During these measurements, the received signal strength indicator (RSSI) has been the paramount value to estimate the antenna performance in connection with the sensor node. Following this measurement campaign, we have been able to notice that the use of only directive antennas is not sufficient in a random deployment of sensor nodes. Hence, the reconfigurable aspect of the beam pattern by use of powerless active components should be taken into consideration. Such kind of antennas provide an improvement of the RSSI, which is a key factor in the reduction of collisions drastically on one hand, and on the other hand related to a reduction of power consumption
Kacimi, Rahim. "Techniques de conservation d'énergie pour les réseaux de capteurs sans fil." Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT035H/document.
Full textTechnological advances during the last few years allowed the development of new and cheap sensors equiped with wireless communication which can be configured to form autonomous networks. The application areas for wireless sensor networks (WSN) are various: home automations, health care services, military domain, and environment monitoring. The imposed constraints are limited capacity of processing, storage, and especially energy. In addition, implementing WSN solutions is highly open and requires that the infrastructure, the mechanisms and the protocols should be completely designed based on each specific application.In this thesis, we first focused on small networks. We designed « Placide », a protocol stack solution for cold chain monitoring proposed within the ANR-CAPTEURS project. The first originality of this solution is based on the absence of infrastructure and base stations. « Placide » is composed of self-organizing and energy-efficient protocols based on a virtual ring construction between nodes. The second topic is devoted to an experimental study on Link Quality Indicator (LQI). There are two main objectives. Firstly, we want to endorse our precise assumptions of the first part of the work. Secondly, our poposed link quality based protocols and algorithms willbe described. We focused on LQI variations according to distance between nodes and transmission power.Thereafter, the impact of LQI on the network topology has been studied. Feedbacks are important to understand which factors affect the network lifetime. The last contribution relates to the use of these observations by proposing load balancing strategies. Our idea is that very reduced protocols and simple mechanisms can be used in routing protocols. We illustrate these principles through simple examples where we show the superiority of these solutions compared to standard routing like shortest path for example
Moulahi, Tarek. "Algorithmes de diffusion dans les réseaux dynamiques de capteurs sans fil." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2021/document.
Full textIn this thesis, we are interested in the task of diffusion in networks of dynamic wireless sensors RCSF. This is an essential and primordial task, since it is necessary for neighbor discovery, routing, information distribution throughout the network, node location and time synchronization.[...]
Bizagwira, Honoré. "Réseaux de capteurs sans fil étendu robuste exploitant des liens atypiques." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22770/document.
Full textThis thesis takes place in the context of environmental monitoring applications requiring regular measurements of biological or geophysical characteristics. These applications include for instance the measuring of the spread of pollutants in rivers, monitoring of the development of bacteria in bathing waters, etc. Wireless Sensor Networks (WSNs) provide cost-effective and reliable solutions to allow the automation of such data gathering. The good functioning of these networks depends on the quality of the radio transmissions, which is particularly true in environments where the conditions are not suitable for the propagation of radio waves and where the links may therefore be intermittent. The objective of this work is to propose an effective protocol solution under such conditions, in the particular case of a sensor network deployed on the water surface. The thesis begins with a description of the methodology, mechanisms and a platform for exploring the quality of a radio link displayed at the water surface. We present different measures that have been carried out. The protocol solutions we propose take into account the evolutionary nature of the topology due to the instability of the radio links in order to improve the efficiency of the data gathering and to reduce the energy consumption of the nodes. Our approach is based on the periodic reconstruction of the topology, the communication between nodes by appointments defined by transmission windows, the use of the multi-channel to drain the data and the adaptation of the transmission window size as a function of local traffic. All these propositions are validated by prototyping and simulation using NS-3. The results show that our solution is capable of collecting data in a dynamic topology while reducing both gathering time and energy consumption
Alghamdi, Bandar. "Etude des méthodes d'ordonnancement sur les réseaux de capteurs sans fil." Thesis, Reims, 2015. http://www.theses.fr/2015REIMS010/document.
Full textThe Wireless Body Area Network (WBAN) is the most critical field when considering Wireless Sensor Networks (WSN). It must be a self-organizing network architecture, meaning that it should be able to efficiently manage all network architecture requirements. The WBAN usually contains at least two or more body sensors. Each body sensor sends packets to or receives packets from the Personal Area Network Coordinator (PANC). The PANC is responsible for scheduling its child nodes' tasks. Scheduling tasks in the WBAN requires a dynamic and an adaptive process in order to handle cases of emergency that can occur with a given patient. To improve the most important parameters of a WBAN, such as quality link, response time, throughput, the duty-cycle, and packet delivery, we propose three scheduling processes: the semi-dynamic, dynamic, and priority-based dynamic scheduling approaches.In this thesis, we propose three task scheduling techniques, Semi-Dynamic Scheduling (SDS), Efficient Dynamic Scheduling (EDS) and High Priority Scheduling (HPS) approaches. Moreover, a comprehensive study has been performed for the WBAN platforms by classifying and evaluating them. We also investigate the mobility model for the WBANs by designing an architecture that describe this model. In addition, we detail a diagnosis procedure by using classification methods in order to solve very sensitive epidemic diseases. Then, our proposals have been validated using two techniques to check out the feasibility of our proposals. These techniques are simulation scenarios using the well-known network simulator OPNET and real implementations over TelosB motes under the TinyOS system
Chevalier, Ludovic. "Performances de l'optique sans fil pour les réseaux de capteurs corporels." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0118/document.
Full textThis thesis deals with the performance of optical girelles communications for body area networks (BAN) as an alternative solution to the radiofrequency one, in the context of mobile healthcare monitoring. After presenting the main characteristics of a BAN using the radiofrequency technology, specifically in the UWB band, we explain the advantages of the optical wireless technology. Diffuse propagation based on infrared technology is then considered for BAN, exploiting optical reflections from environment surfaces. Several optical wireless channel modeling methods are introduced, and we consider two solutions for the link between two on-body nodes: a classical method named “one reflection model”, used to estimate performance variations, and a ray-launching method, used to take into account a great amount of optical reflections. Considering several scenarios, we determine the outage probability, and show that the diffuse optical wireless technology is able to achieve an on-body link, with the data rates and the quality of service required by health monitoring applications, for a transmitted power far lower than the limit defined in standards. Then, we evaluate the theoretical performance, in terms of error probability, of an optical wireless BAN, considering the optical code division multiple access technique. Finally, we show that a BAN using optical wireless technology is theoretically feasible, regarding a health monitoring application, and considering the mobility of the patient in indoor environment
Jacquot, Aurélien. "Supervision de réseaux d'objets intelligents communicants sans fil." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00719350.
Full textHan, Bing. "Allocation distribuée des requêtes dans le réseau de capteur sans fil." Paris,Télécom ParisTech, 2009. http://pastel.archives-ouvertes.fr/pastel-00006032.
Full textWireless sensor network architecture can be greatly simplified by enabling the mobile users to access directly the sensor nodes. Under this case, both efficiency and fairness should be considered in order to keep the network in an optimal operational state and the fairness is especially important as long as the users are actually the clients that pay for the services provided by the network. We studied this fairness problem from a user's point view. We have identified and studied the following problems: 1. The problem to allocate the continuous query with max-min fairness in a WSN. We obtained explicit expression for the case where only two uses are in the network and we proposed a distributed heuristic algorithm to solve a more user case. 2. The problem to allocate the discrete queries with fairness. Under this case, we used lexicographic max-min fairness and we proposed new formulation and solution for the problem. 3. The feasibility to reformulate the fairness problem and implement the solution in a 802. 15. 4/ZigBee based WSN. 4. The MMKP used in the formulation of the fairness problem. We have studied this problem by simulation experiments. We proposed a systematic method to generate the MMKP instances and we tested several groups of instances with the BBLP algorithm and two optimization utilities, namely the GLPK and CPLEX
Buhrig, Aurélien. "Optimisation de la consommation des noeuds de réseaux de capteurs sans fil." Phd thesis, Grenoble INPG, 2008. http://tel.archives-ouvertes.fr/tel-00319073.
Full textNguyen, Tuan-Duc. "Stratégies MIMO Coopératives pour Réseaux de Capteurs Sans Fil Contraints en Energie." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00469691.
Full textTran, Le-Quang-Vinh. "Optimisation énergétique des transmissions coopératives pour les réseaux de capteurs sans fil." Phd thesis, Université Rennes 1, 2012. http://tel.archives-ouvertes.fr/tel-00828261.
Full textTovinakere, Dwarakanath Vivek. "Contrôleurs reconfigurables ultra-faible consommation pour les réseaux de capteurs sans fil." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00859921.
Full textKhan, Safdar Abbas, and Safdar Abbas Khan. "Localisation et détection de fautes dans les réseaux de capteurs sans fil." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00795394.
Full textMansour, Ismail. "Contribution à la sécurité des communications des réseaux de capteurs sans fil." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00877033.
Full textSaad, Clément. "Quelques contributions dans les réseaux de capteurs sans fil : Localisation et Routage." Phd thesis, Université d'Avignon, 2008. http://tel.archives-ouvertes.fr/tel-00364914.
Full textAby, Affoua Thérèse. "Réseaux de capteurs sans fil étendus dédiés aux collectes de données environnementales." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22671/document.
Full textWireless sensor networks are used in many environmental monitoring applications (e.g., to monitor forest fires or volcanoes). In such applications, sensor nodes have a limited quantity of energy, but must operate for years without having their batteries changed. The main mechanism used to allow nodes to save energy is to sequence periods of activity and inactivity. However, the design of MAC and routing protocols for applications with low duty-cycle is still a challenge. In this thesis, we proposed unsynchronized MAC and routing protocols for wireless sensor networks devoted to environmental monitoring applications. The main specificity of our protocols is that they are adapted to very low duty-cycle (less than 1 % for all nodes). Our protocols are analyzed and compared to existing protocols by simulation and experimentation on TelosB nodes. Despite this low duty-cycle for all nodes, our protocols are able to achieve good performance, unlike other protocols in the literature, which are not adapted to these extreme conditions
Khan, Safdar Abbas. "Localisation et détection de fautes dans les réseaux de capteurs sans fil." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1028/document.
Full textIn this thesis three themes related to wireless sensor networks (WSNs) are covered. The first one concerns the power loss in a node signal due to voltage droop in the battery of the node. In the first part of the thesis a method is proposed to compensate for the apparent increase in the calculated distance between the related nodes due to decrease in the energy of the signal sending node battery. A function is proposed whose arguments are the apparently observed RSS and the current voltage of the emitter node battery. The return of the function is the corrected RSS that corresponds to the actual distance amongst the connected nodes. Hence increasing the efficiency of the RSS based localization methods in WSNs. In the second part of the thesis a position estimation method for localization of nodes in a WSN is proposed. In the proposed localization algorithm anchor nodes are used as landmark points. The localization method proposed here does not require any constraint on the placement of the anchors; rather any three randomly chosen nodes can serve as anchors. A heuristic approach is used to find the relative topology with the help of distance matrix. The purpose of the distance matrix is to indicate whether or not a pair of nodes has a connection between them and in case of connectivity it gives the estimated distance between the nodes. By using the information of connectivity between the nodes and their respective distances the topology of the nodes is calculated. This method is heuristic because it uses the point solution from the intersection of two circles instead of conventional triangulation method, where a system of three quadratic equations in two variables is used whereby the computational complexity of the position estimation method is increased. When two connected nodes have another node in common, then by using the information of distances between these interconnected nodes, two possible positions are calculated for the third node. The presence or absence of a connection between the third node and a fourth node helps in finding the accurate possibility out of the two. This process is iterated till all the nodes have been relatively placed. Once the relative topology has been calculated, we need to find the exact symmetry, orientation, and position of this topology in the plane. It is at this moment the knowledge of three nodes positions comes into action. From the relative topology we know the temporary coordinates of the nodes. By having a comparison of certain characteristics between the temporary coordinates and the exact coordinates; first the symmetry of relative topology is obtained that would correspond to the original topology. In other words it tells whether or not the relative topology is a mirror image of the original topology. Some geometrical operators are used to correct the topology position and orientation. Thus, all the nodes in the WSN are localized using exactly three anchors. The last part of the thesis focuses on the detection of faults in a WSN. There is always a possibility that a sensor of a node is not giving accurate measurements all of the time. Therefore, it is necessary to find if a node has developed a faulty sensor. With the precise information about the sensor health, one can determine the extent of reliance on its sensor measurement. To equip a node with multiple sensors is not an economical solution. Thus the sensor measurements of a node are modeled with the help of the fuzzy inference system (FIS). For each node, both recurrent and non-recurrent systems are used to model its sensor measurement. An FIS for a particular node is trained with input variables as the actual sensor measurements of the neighbor nodes and with output variable as the real sensor measurements of that node. The difference between the FIS approximated value and the actual measurement of the sensor is used as an indication for whether or not to declare a node as faulty
Randriatsiferana, Rivo Sitraka A. "Optimisation énergétique des protocoles de communication des réseaux de capteurs sans fil." Thesis, La Réunion, 2014. http://www.theses.fr/2014LARE0019/document.
Full textTo increase the lifetime of wireless sensor networks, a solution is to improve the energy efficiency of the communication's protocol. The grouping of nodes in the wireless sensor network clustering is one of the best methods. This thesis proposes several improvements by changing the settings of the reference protocol LEACH. To improve the energy distribution of "cluster-heads", we propose two centralized clustering protocols LEACH and k-optimized version k-LEACH-VAR. A distributed algorithm, called e-LEACH, is proposed to reduce the periodic exchange of information between the nodes and the base station during the election of "cluster-heads". Moreover, the concept of energy balance is introduced in metric election to avoid overloading nodes. Then we presented a decentralized version of k-LEACH, which in addition to the previous objectives, integrates the overall energy consumption of the network. This protocol, called k-LEACH-C2D, also aims to promote the scalability of the network. To reinforce the autonomy and networks, both routing protocols "multi-hop" probability, denoted CB-RSM and FRSM build elementary paths between the "cluster-heads" and elected the base station. The protocol, CB-RSM, forms a hierarchy of "cluster-heads" during the training phase clusters, with an emphasis on self-scheduling and self-organization between "cluster-heads" to make the networks more scalable. These protocols are based on the basic idea that the nodes have the highest residual energy and lower variance of energy consumption become "cluster-head". We see the central role of consumption of the node in our proposals. This point will be the last part of this thesis. We propose a methodology to characterize experimentally the consumption of a node. The objectives are to better understand the consumption for different sequences of the node status. In the end, we propose a global model of the consumption of the node