Academic literature on the topic 'Reservoir computing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reservoir computing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reservoir computing"
Van der Sande, Guy, Daniel Brunner, and Miguel C. Soriano. "Advances in photonic reservoir computing." Nanophotonics 6, no. 3 (May 12, 2017): 561–76. http://dx.doi.org/10.1515/nanoph-2016-0132.
Full textTanaka, Gouhei. "Reservoir Computing." Journal of The Institute of Image Information and Television Engineers 74, no. 3 (2020): 532–34. http://dx.doi.org/10.3169/itej.74.532.
Full textAntonik, Piotr, Serge Massar, and Guy Van Der Sande. "Photonic reservoir computing using delay dynamical systems." Photoniques, no. 104 (September 2020): 45–48. http://dx.doi.org/10.1051/photon/202010445.
Full textSenn, Christoph Walter, and Itsuo Kumazawa. "Abstract Reservoir Computing." AI 3, no. 1 (March 10, 2022): 194–210. http://dx.doi.org/10.3390/ai3010012.
Full textLukoševičius, Mantas, Herbert Jaeger, and Benjamin Schrauwen. "Reservoir Computing Trends." KI - Künstliche Intelligenz 26, no. 4 (May 16, 2012): 365–71. http://dx.doi.org/10.1007/s13218-012-0204-5.
Full textNAITOH, Yasuhisa, and Yoshiyuki YAMASHITA. "Physical Reservoir Computing." Vacuum and Surface Science 67, no. 11 (November 10, 2024): 520. http://dx.doi.org/10.1380/vss.67.520.
Full textYue, Dianzuo, Yushuang Hou, Chunxia Hu, Cunru Zang, and Yingzhe Kou. "Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System." Photonics 10, no. 3 (February 22, 2023): 236. http://dx.doi.org/10.3390/photonics10030236.
Full textAsadullah, M., P. Behrenbruch, and S. Pham. "RESERVOIR SIMULATION—UPSCALING, STREAMLINES AND PARALLEL COMPUTING." APPEA Journal 47, no. 1 (2007): 199. http://dx.doi.org/10.1071/aj06013.
Full textGovia, L. C. G., G. J. Ribeill, G. E. Rowlands, and T. A. Ohki. "Nonlinear input transformations are ubiquitous in quantum reservoir computing." Neuromorphic Computing and Engineering 2, no. 1 (February 18, 2022): 014008. http://dx.doi.org/10.1088/2634-4386/ac4fcd.
Full textOliveira, Estevao Rada, and Fernando Juliani. "Reservoir Computing: uma Abordagem Conceitual." Revista de Ciências Exatas e Tecnologia 13, no. 13 (December 30, 2018): 09. http://dx.doi.org/10.17921/1890-1793.2018v13n13p09-12.
Full textDissertations / Theses on the topic "Reservoir computing"
Dale, Matthew. "Reservoir Computing in materio." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/22306/.
Full textKulkarni, Manjari S. "Memristor-based Reservoir Computing." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/899.
Full textTran, Dat Tien. "Memcapacitive Reservoir Computing Architectures." PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/5001.
Full textMelandri, Luca. "Introduction to Reservoir Computing Methods." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8268/.
Full textWeddell, Stephen John. "Optical Wavefront Prediction with Reservoir Computing." Thesis, University of Canterbury. Electrical and Computer Engineering, 2010. http://hdl.handle.net/10092/4070.
Full textSergio, Anderson Tenório. "Otimização de Reservoir Computing com PSO." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/11498.
Full textMade available in DSpace on 2015-03-09T14:34:23Z (GMT). No. of bitstreams: 2 Dissertaçao Anderson Sergio.pdf: 1358589 bytes, checksum: fdd2a84a1ce8a69596fa45676bc522e4 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013-03-07
Reservoir Computing (RC) é um paradigma de Redes Neurais Artificiais com aplicações importantes no mundo real. RC utiliza arquitetura similar às Redes Neurais Recorrentes para processamento temporal, com a vantagem de não necessitar treinar os pesos da camada intermediária. De uma forma geral, o conceito de RC é baseado na construção de uma rede recorrente de maneira randômica (reservoir), sem alteração dos pesos. Após essa fase, uma função de regressão linear é utilizada para treinar a saída do sistema. A transformação dinâmica não-linear oferecida pelo reservoir é suficiente para que a camada de saída consiga extrair os sinais de saída utilizando um mapeamento linear simples, fazendo com que o treinamento seja consideravelmente mais rápido. Entretanto, assim como as redes neurais convencionais, Reservoir Computing possui alguns problemas. Sua utilização pode ser computacionalmente onerosa, diversos parâmetros influenciam sua eficiência e é improvável que a geração aleatória dos pesos e o treinamento da camada de saída com uma função de regressão linear simples seja a solução ideal para generalizar os dados. O PSO é um algoritmo de otimização que possui algumas vantagens sobre outras técnicas de busca global. Ele possui implementação simples e, em alguns casos, convergência mais rápida e custo computacional menor. Esta dissertação teve o objetivo de investigar a utilização do PSO (e duas de suas extensões – EPUS-PSO e APSO) na tarefa de otimizar os parâmetros globais, arquitetura e pesos do reservoir de um RC, aplicada ao problema de previsão de séries temporais. Os resultados alcançados mostraram que a otimização de Reservoir Computing com PSO, bem como com as suas extensões selecionadas, apresentaram desempenho satisfatório para todas as bases de dados estudadas – séries temporais de benchmark e bases de dados com aplicação em energia eólica. A otimização superou o desempenho de diversos trabalhos na literatura, apresentando-se como uma solução importante para o problema de previsão de séries temporais.
Appeltant, Lennert. "Reservoir computing based on delay-dynamical systems." Doctoral thesis, Universitat de les Illes Balears, 2012. http://hdl.handle.net/10803/84144.
Full textAndersson, Casper. "Reservoir Computing Approach for Network Intrusion Detection." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54983.
Full textFu, Kaiwei. "Reservoir Computing with Neuro-memristive Nanowire Networks." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25900.
Full textAlomar, Barceló Miquel Lleó. "Methodologies for hardware implementation of reservoir computing systems." Doctoral thesis, Universitat de les Illes Balears, 2017. http://hdl.handle.net/10803/565422.
Full text[spa]Inspiradas en la forma en que el cerebro procesa la información, las redes neuronales artificiales (RNA) se crearon con el objetivo de reproducir habilidades humanas en tareas que son difíciles de resolver utilizando la programación algorítmica clásica. El paradigma de las RNA se ha aplicado a numerosos campos de la ciencia y la ingeniería gracias a su capacidad de aprender de ejemplos, la adaptación, el paralelismo y la tolerancia a fallas. El reservoir computing (RC), basado en el uso de una red neuronal recurrente (RNR) aleatoria como núcleo de procesamiento, es un modelo de gran alcance muy adecuado para procesar series temporales. Las realizaciones en hardware de las RNA son cruciales para aprovechar las propiedades paralelas de estos modelos, las cuales favorecen una mayor velocidad y fiabilidad. Por otro lado, las redes neuronales en hardware (RNH) pueden ofrecer ventajas apreciables en términos de consumo energético y coste. Los dispositivos compactos de bajo coste implementando RNH son útiles para apoyar o reemplazar al software en aplicaciones en tiempo real, como el control, monitorización médica, robótica y redes de sensores. Sin embargo, la realización en hardware de RNA con un número elevado de neuronas, como en el caso del RC, es una tarea difícil debido a la gran cantidad de recursos exigidos por las operaciones involucradas. A pesar de los posibles beneficios de los circuitos digitales en hardware para realizar un procesamiento neuronal basado en RC, la mayoría de las implementaciones se realizan en software mediante procesadores convencionales. En esta tesis, propongo y analizo varias metodologías para la implementación digital de sistemas RC utilizando un número limitado de recursos hardware. Los diseños de la red neuronal se describen en detalle tanto para una implementación convencional como para los distintos métodos alternativos. Se discuten las ventajas e inconvenientes de las diversas técnicas con respecto a la precisión, velocidad de cálculo y área requerida. Finalmente, las implementaciones propuestas se aplican a resolver diferentes problemas prácticos de ingeniería.
[eng]Inspired by the way the brain processes information, artificial neural networks (ANNs) were created with the aim of reproducing human capabilities in tasks that are hard to solve using the classical algorithmic programming. The ANN paradigma has been applied to numerous fields of science and engineering thanks to its ability to learn from examples, adaptation, parallelism and fault-tolerance. Reservoir computing (RC), based on the use of a random recurrent neural network (RNN) as processing core, is a powerful model that is highly suited to time-series processing. Hardware realizations of ANNs are crucial to exploit the parallel properties of these models, which favor higher speed and reliability. On the other hand, hardware neural networks (HNNs) may offer appreciable advantages in terms of power consumption and cost. Low-cost compact devices implementing HNNs are useful to suport or replace software in real-time applications, such as control, medical monitoring, robotics and sensor networks. However, the hardware realization of ANNs with large neuron counts, such as in RC, is a challenging task due to the large resource requirement of the involved operations. Despite the potential benefits of hardware digital circuits to perform RC-based neural processing, most implementations are realized in software using sequential processors. In this thesis, I propose and analyze several methodologies for the digital implementation of RC systems using limited hardware resources. The neural network design is described in detail for both a conventional implementation and the diverse alternative approaches. The advantages and shortcomings of the various techniques regarding the accuracy, computation speed and required silicon area are discussed. Finally, the proposed approaches are applied to solve different real-life engineering problems.
Books on the topic "Reservoir computing"
Nakajima, Kohei, and Ingo Fischer, eds. Reservoir Computing. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-1687-6.
Full textBrunner, Daniel, Miguel C. Soriano, and Guy Van der Sande, eds. Photonic Reservoir Computing. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496.
Full textWong, Patrick, Fred Aminzadeh, and Masoud Nikravesh, eds. Soft Computing for Reservoir Characterization and Modeling. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1807-9.
Full textBruk, Stevan. Methods of computing sedimentation in lakes and reservoirs: A contribution to the International Hydrological Programme, IHP - II Project A. 2.6.1 panel. Paris: UNESCO, 1985.
Find full text1959-, Nikravesh Masoud, Aminzadeh Fred, and Zadeh Lotfi Asker, eds. Soft computing and intelligent data analysis in oil exploration. Amsterdam: Elsevier, 2003.
Find full textStevan, Bruk, and International Hydrological Programme, eds. Methods of computing sedimentation in lakes and reservoirs: A contribution to the International Hydrological Programme, IHP - II Project A. 2.6.1 panel. Paris: UNESCO, 1985.
Find full textBrunner, Daniel, Miguel C. Soriano, and Guy Van der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks. de Gruyter GmbH, Walter, 2019.
Find full textBrunner, Daniel, Miguel C. Soriano, and Guy Van der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks. de Gruyter GmbH, Walter, 2019.
Find full textAminzadeh, Fred, Masoud Nikravesh, and Patrick Wong. Soft Computing for Reservoir Characterization and Modeling. Physica-Verlag, 2013.
Find full textBook chapters on the topic "Reservoir computing"
Tate, Naoya. "Quantum-Dot-Based Photonic Reservoir Computing." In Photonic Neural Networks with Spatiotemporal Dynamics, 71–87. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5072-0_4.
Full textBuhmann, M. D., Prem Melville, Vikas Sindhwani, Novi Quadrianto, Wray L. Buntine, Luís Torgo, Xinhua Zhang, et al. "Reservoir Computing." In Encyclopedia of Machine Learning, 863. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_726.
Full textKonkoli, Zoran. "Reservoir Computing." In Encyclopedia of Complexity and Systems Science, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-27737-5_683-1.
Full textMiikkulainen, Risto. "Reservoir Computing." In Encyclopedia of Machine Learning and Data Mining, 1. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7502-7_731-1.
Full textMiikkulainen, Risto. "Reservoir Computing." In Encyclopedia of Machine Learning and Data Mining, 1103–4. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_731.
Full textKonkoli, Zoran. "Reservoir Computing." In Unconventional Computing, 619–29. New York, NY: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-6883-1_683.
Full textMiikkulainen, Risto. "Reservoir Computing." In Encyclopedia of Machine Learning and Data Science, 1. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-4899-7502-7_731-2.
Full textGallicchio, Claudio, and Alessio Micheli. "Deep Reservoir Computing." In Natural Computing Series, 77–95. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-1687-6_4.
Full textConti, Claudio. "Quantum Reservoir Computing." In Quantum Science and Technology, 219–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44226-1_9.
Full textBrunner, Daniel, Piotr Antonik, and Xavier Porte. "1. Introduction to novel photonic computing." In Photonic Reservoir Computing, edited by Daniel Brunner, Miguel C. Soriano, and Guy Van der Sande, 1–32. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-001.
Full textConference papers on the topic "Reservoir computing"
Bednyakova, A., E. Manuylovich, D. A. Ivoilov, I. S. Terekhov, and S. K. Turitsyn. "SOA-based reservoir computing." In 2024 International Conference Laser Optics (ICLO), 279. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624399.
Full textNikiruy, K., T. Ivanov, M. Ziegler, D. Rossetti, F. Corinto, A. Ascoli, R. Tetzlaff, A. S. Demirkol, and N. Schmitt. "Next Generation Memristor Reservoir Computing." In 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 912–17. IEEE, 2024. https://doi.org/10.1109/metroxraine62247.2024.10796786.
Full textCastro, Bernard J. Giron, Christophe Peucheret, and Francesco Da Ros. "Microring Resonator-based Photonic Reservoir Computing." In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648245.
Full textNishimura, Ryo, and Makoto Fukushima. "Comparing Connectivity-To-Reservoir Conversion Methods for Connectome-Based Reservoir Computing." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650803.
Full textGaur, Prabhav, Chengkuan Gao, Karl Johnson, Shimon Rubin, Yeshaiahu Fainman, and Tzu-Chien Hsueh. "Optimization of hybrid photonic electrical reservoir computing." In Photonic Computing: From Materials and Devices to Systems and Applications, edited by Xingjie Ni and Wenshan Cai, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3027516.
Full textGarcia-Beni, Jorge, Gian Luca Giorgi, Miguel C. Soriano, and Roberta Zambrini. "Quantum reservoir computing for time series processing." In Quantum Communications and Quantum Imaging XXII, edited by Keith S. Deacon and Ronald E. Meyers, 31. SPIE, 2024. http://dx.doi.org/10.1117/12.3027999.
Full textGoudarzi, Alireza, and Christof Teuscher. "Reservoir Computing." In NANOCOM'16: ACM The Third Annual International Conference on Nanoscale Computing and Communication. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2967446.2967448.
Full textDat Tran, S. J., and Christof Teuscher. "Memcapacitive reservoir computing." In 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, 2017. http://dx.doi.org/10.1109/nanoarch.2017.8053719.
Full textReid, David, and Mark Barrett-Baxendale. "Glial Reservoir Computing." In 2008 Second UKSIM European Symposium on Computer Modeling and Simulation (EMS). IEEE, 2008. http://dx.doi.org/10.1109/ems.2008.74.
Full textSharma, Divyam, Si En Ng, and Nripan Mathews. "Photovoltaic Reservoir Computing." In Neuromorphic Materials, Devices, Circuits and Systems. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.033.
Full textReports on the topic "Reservoir computing"
Kulkarni, Manjari. Memristor-based Reservoir Computing. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.899.
Full textTran, Dat. Memcapacitive Reservoir Computing Architectures. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6877.
Full textZyvoloski, G., L. Auer, and J. Dendy. High performance computing for domestic petroleum reservoir simulation. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/237335.
Full textGuppy, Babur, and Remezani. L51555 Estimation of Average Reservoir Pressure in Underground Storage Reservoirs. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1988. http://dx.doi.org/10.55274/r0011302.
Full textKenneth D. Luff. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/808958.
Full textKenneth D. Luff. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/834753.
Full textMark A. Sippel, William C. Carrigan, Kenneth D. Luff, and Lyn Canter. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/823509.
Full textFrancesco, Caravelli, Zhu Ruomin, Baccetti Valentina, and Kuncic Zdenka. Ergodicity, lack thereof, and the performance of reservoir computing with memristive networks and nanowire. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2386906.
Full textSippel, Mark A. Intelligent Computing System for Reservoir Analysis and Risk Assessment of Red River Formation, Class Revisit. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/801440.
Full textAlmassian, Amin. Information Representation and Computation of Spike Trains in Reservoir Computing Systems with Spiking Neurons and Analog Neurons. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2720.
Full text