Academic literature on the topic 'Resin Transfer Molding (RTM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resin Transfer Molding (RTM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Resin Transfer Molding (RTM)"

1

Young, Wen-Bin, and Cheng-Wey Chiu. "Study on Compression Transfer Molding." Journal of Composite Materials 29, no. 16 (November 1995): 2180–91. http://dx.doi.org/10.1177/002199839502901605.

Full text
Abstract:
Resin transfer molding (RTM) finishes the resin impregnation and composite fabrication at the same time. It simplifies the process for composites fabrication and has the advantages of automation, low cost, and versatile design of fiber reinforcement. Therefore, the RTM process is widely used in the architecture, automotive, and aerospace industries. However, in the RTM process, resin must flow through the fiber reinforcement in the planar direction, which, in some cases such as fabrications of large panels, may need a long time for the mold filling. If the part dimension is too large or the fiber permeability is too low, the mold filling process may not be able to complete before the resin gels. Therefore, some modification for the RTM process is necessary in order to reduce the mold filling time. In the compression transfer molding, the mold opens a small gap for the resin to fill in between fiber mats and the mold, and then compresses the fiber reinforcement to be impregnated by the resin in the thickness direction. In this way, since resin is forced into the fiber reinforcements in the thickness direction, the damage of the fibers will be minimized. In addition, the mold filling time will be reduced due to the different flow path of the resin inside the mold. This study explored the possibility of using the compression transfer molding process and also identified the key parameters regarding the process.
APA, Harvard, Vancouver, ISO, and other styles
2

de Oliveira, Iran Rodrigues, Sandro Campos Amico, R. Barcella, and Antônio Gilson Barbosa de Lima. "Application of Calcium Carbonate in Resin Transfer Molding Process." Defect and Diffusion Forum 353 (May 2014): 39–43. http://dx.doi.org/10.4028/www.scientific.net/ddf.353.39.

Full text
Abstract:
Resin Transfer Molding (RTM) is one of the most widely known composite manufacturing techniques of the liquid molding family, being extensively studied and used to obtain advanced composite materials comprised of fibers embedded in a thermoset polymer matrix. Nowadays, RTM is used by many industrial sectors such as automotive, aerospace, civil and sporting equipment. Therefore, the objective of this study is to verify the effect of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 x 150 x 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) with particle size of 75μm. The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow from position, however it is possible to make the composite with a good quality and low cost.
APA, Harvard, Vancouver, ISO, and other styles
3

Hori, Masayoshi, Takayuki Nomura, Masaharu Shimakura, Shuichi Takashima, and Eiji Masumoto. "Refinement of resin transfer molding (RTM) method." Advanced Composite Materials 6, no. 3 (January 1997): 255–59. http://dx.doi.org/10.1163/156855197x00120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Oliveira, Iran Rodrigues, Sandro Campos Amico, Jeferson Avila Souza, F. Ferreira Luz, R. Barcella, and Antônio Gilson Barbosa de Lima. "Resin Transfer Molding Process: A Numerical Investigation." Defect and Diffusion Forum 334-335 (February 2013): 193–98. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.193.

Full text
Abstract:
In the processing of high performance composite materials, the RTM process has been widely used by many sectors of the industry. This process consists in injecting a polymeric resin through a fibrous reinforcement arranged within a mold. In this sense, this study aims to simulate the rectilinear infiltration of pure resin and filled resin (40% CaCO3) in a mold with glass fiber preform, using the PAM-RTM commercial software. Numerical results of the filling time and fluid front flow position over time were assessed by comparison with the experimental data and a good accuracy was obtained.
APA, Harvard, Vancouver, ISO, and other styles
5

Geng, Zhi, Shuaishuai Yang, Lianwang Zhang, Zhenzhen Huang, Qichao Pan, Jidi Li, Jianan Weng, et al. "Self-Extinguishing Resin Transfer Molding Composites Using Non-Fire-Retardant Epoxy Resin." Materials 11, no. 12 (December 15, 2018): 2554. http://dx.doi.org/10.3390/ma11122554.

Full text
Abstract:
Introducing fire-retardant additives or building blocks into resins is a widely adopted method used for improving the fire retardancy of epoxy composites. However, the increase in viscosity and the presence of insoluble additives accompanied by resin modification remain challenges for resin transfer molding (RTM) processing. We developed a robust approach for fabricating self-extinguishing RTM composites using unmodified and flammable resins. To avoid the effects on resin fluidity and processing, we loaded the flame retardant into tackifiers instead of resins. We found that the halogen-free flame retardant, a microencapsulated red phosphorus (MRP) additive, was enriched on fabric surfaces, which endowed the composites with excellent fire retardancy. The composites showed a 79.2% increase in the limiting oxygen index, a 29.2% reduction in heat release during combustion, and could self-extinguish within two seconds after ignition. Almost no effect on the mechanical properties was observed. This approach is simple, inexpensive, and basically applicable to all resins for fabricating RTM composites. This approach adapts insoluble flame retardants to RTM processing. We envision that this approach could be extended to load other functions (radar absorbing, conductivity, etc.) into RTM composites, broadening the application of RTM processing in the field of advanced functional materials.
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Zeyu, Jie Xiao, Lei Tao, Yuanping Wei, Shijie Wang, Hui Zhang, Shu Zhu, and Muhuo Yu. "Preparation of High-Performance Carbon Fiber-Reinforced Epoxy Composites by Compression Resin Transfer Molding." Materials 12, no. 1 (December 20, 2018): 13. http://dx.doi.org/10.3390/ma12010013.

Full text
Abstract:
To satisfy the light weight requirements of vehicles owing to the aggravation of environmental pollution, carbon-fiber (CF)-reinforced epoxy composites have been chosen as a substitute for traditional metal counterparts. Since the current processing methods such as resin transfer molding (RTM) and compression molding (CM) have many limitations, an integrated and optimal molding method needs to be developed. Herein, we prepared high-performance composites by an optimized molding method, namely compression resin transfer molding (CRTM), which combines the traditional RTM and CM selectively and comprehensively. Differential scanning calorimetry (DSC) and rotational rheometry were performed to optimize the molding parameters of CRTM. In addition, metallurgical microscopy test and mechanical tests were performed to evaluate the applicability of CRTM. The experimental results showed that the composites prepared by CRTM displayed superior mechanical properties than those of the composites prepared by RTM and CM. The composite prepared by CRTM showed up to 42.9%, 41.2%, 77.3%, and 5.3% increases in tensile strength, bending strength, interlaminar shear strength, and volume fraction, respectively, of the composites prepared by RTM. Meanwhile, the porosity decreased by 45.2 %.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Wei Dong, Gang Liu, Xiao Lan Hu, Xue Feng An, Xiang Yu Zhong, Ye Li, and Xiao Su Yi. "The Processing Characteristics and Mechanical Properties of Semi-Prepreg RTM Composites." Advanced Materials Research 721 (July 2013): 153–58. http://dx.doi.org/10.4028/www.scientific.net/amr.721.153.

Full text
Abstract:
A novel semi-prepreg resin transfer molding (RTM) process was developed to address difficulties associated with RTM process and to improve the mechanical properties of the resulting composites. Unidirectional semi-prepregs exhibiting relatively good overlay characteristics were prepared via prepolymerization of bismaleimide resin followed by wet winding. The processing characteristics and mechanical properties of composites fabricated via semi-prepreg RTM technology were compared with those of composites produced using a normal-prepreg compression molding process. Experimental results showed that the laminates fabricated by the semi-prepreg RTM process were of better internal quality and had superior mechanical properties as compared with laminates fabricated by the normal-prepreg compression molding process.
APA, Harvard, Vancouver, ISO, and other styles
8

de Oliveira, Iran Rodrigues, Sandro Campos Amico, Jeferson Avila Souza, and Antônio Gilson Barbosa de Lima. "Resin Transfer Molding Process: A Numerical Analysis." Defect and Diffusion Forum 353 (May 2014): 44–49. http://dx.doi.org/10.4028/www.scientific.net/ddf.353.44.

Full text
Abstract:
This work aims to investigate the infiltration of a CaCO3filled resin using experiments and the PAM-RTM software. A preform of glass fiber mat, with dimensions 320 x 150 x 3.6 mm, has been used for experiments conducted at room temperature, with injection pressure of 0.25bar. The resin contained 10 and 40% CaCO3content with particle size 38μm. The numerical results were evaluated by direct comparison with experimental data. The flat flow-front profile of the rectilinear flow was reached approximately halfway the length of the mold. It was observed, that the speed of the filling decreases with increasing CaCO3content and,the higher the amount of CaCO3in the resin, the lower the permeability of the reinforcement that is found. The reduction in permeability is due to the presence of calcium carbonate particles between the fibers, hindering the resin flow in the fibrous media. The computational fluid flow analysis with the PAM-RTM proved to be an accurate tool study for the processing of composite materials.
APA, Harvard, Vancouver, ISO, and other styles
9

Rau, A. V., S. A. Srinivasan, J. E. McGrath, and A. C. Loos. "Resin transfer molding (RTM) with toughened cyanate ester resin systems." Polymer Composites 19, no. 2 (April 1998): 166–79. http://dx.doi.org/10.1002/pc.10088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Oliveira, Iran Rodrigues, Sandro Campos Amico, F. Ferreira Luz, R. Barcella, V. M. França Bezerra, and Antônio Gilson Barbosa de Lima. "Effect of CaCO3 Content in Resin Transfer Molding Process." Defect and Diffusion Forum 334-335 (February 2013): 188–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.188.

Full text
Abstract:
Composite material can be defined as a combination of two or more materials on a macroscale to form a useful material, often showing properties that none of the individual independent components shows. Resin Transfer Molding (RTM) is one of the most widely known composite manufacturing technique of the liquid molding family, being extensively studied and used to obtain advanced composite materials comprised of fibers embedded in a thermoset polymer matrix. This technique consists in injecting a resin pre-catalysed thermosetting in a closed mold containing a dry fiber preform, where the resin is impregnated. The aim of this study is to investigate the effect caused by the use of CaCO3filled resin on the characteristics of the RTM process. Several experiments were conducted using glass fiber mat and polyester resin molded in a RTM system with cavity dimensions of 320 x 150 x 3.6 mm, at room temperature, and different CaCO3content (0, 10, 20, 30 and 40% in weight). The results show that the use of filled resin with CaCO3influences the resin viscosity and the porous media permeability, making it difficult to fill the porous media during the molding process, however it is possible to make composite with a good quality and low cost.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Resin Transfer Molding (RTM)"

1

Louisy, Elodie. "Synthèse de composites à matrice polylactide par procédé RTM (Resin Transfer Molding)." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R037/document.

Full text
Abstract:
Cette étude concerne l’élaboration de composites à matrice polylactide par procédé RTM (Resin Transfer Molding). Elle se focalise sur la polymérisation par ouverture de cycle (POC) in situ, du L-lactide, en procédé RTM avec comme objectif d’obtenir en une seule étape de synthèse, un composite présentant une matrice biosourcée, biodégradable et biocompatible, avec une bonne imprégnation des fibres par la matrice pour un taux de renfort élevé. Dans un premier temps, des essais préliminaires de polymérisation en masse (sans solvant) du L-lactide en ballon à l’échelle du gramme et en l’absence de renfort ont été réalisés. Ces expériences ont permis de déterminer les conditions initiales permettant l’obtention de matrices PLLA présentant le moins de L-lactide résiduel possible (conversions supérieures à 90 %) et les masses molaires les plus élevées (Mn = 70 000 - 100 000 g.mol-1). Ces caractéristiques sont en effet primordiales pour avoir des propriétés thermomécaniques optimales de la matrice PLLA et adaptées à des applications composites. Cette étude a été suivie d’essais de polymérisation, toujours à l’échelle du gramme, en présence de fibres de différentes natures afin d’étudier leur influence sur la polymérisation, les fibres présentant le moins d’influence étant les fibres de verre tissées (conversion et masses molaires supérieures à 90 % et 70 000 g.mol-1, respectivement). Les conditions expérimentales déterminées précédemment ont été transposées et ajustées pour l’élaboration, en procédé RTM, de composites polylactide/fibres de verre par polymérisation du L-lactide catalysée par l’octanoate d’étain. L’optimisation du procédé RTM a été réalisé en faisant varier la masse de monomère, la concentration en catalyseur, la quantité de fibres, le mode de chauffe de la cuve, la pression d’injection et la pression et température dans le moule. Les propriétés physico-chimiques et mécaniques de composites obtenus ont été également étudiées. Les composites obtenus présentent des conversions de plus de 95 % et des masses molaires pouvant atteindre 80 000 g.mol-1. Les conditions RTM n’influencent pas les propriétés thermiques (Tg = 50 °C ; Tf = 170 °C) et structurales (cristallisation en phase α) du polylactide matricielle. De plus les résistances à la traction et modules d’Young des composites PLLA/fibres de verre peuvent atteindre les 200 MPa et 6 GPa respectivement. La dernière partie concerne l’élaboration de composites à matrice PLLA par procédé RTM en présence de catalyseurs présentant une plus faible toxicité, afin de remplacer l’octanoate d’étain, catalyseur de référence pour la polymérisation du L-lactide qui présente cependant une certaine toxicité et qui pourrait dans un futur proche être proscrit des procédés industriels. Des catalyseurs à base de titane, zinc, magnésium et calcium ont ainsi été étudiés, mais seul le catalyseur de zinc conduit à un matériau satisfaisant pour une application composite (conversion supérieure à 90 % et Mn supérieure à 30 000 g.mol-1), bien que les propriétés mécaniques résultantes soient inférieures à celles obtenues avec le catalyseur d’étain (σ = 93 MPa et E = 3,3 GPa). Enfin, l’utilisation de fibres recyclées en tant que renfort a également été étudiée. Bien que les hautes conversions (95-98 %) et masses molaires (Mn jusqu’à 60 800 g.mol-1) aient été atteintes, les propriétés mécaniques résultantes sont bien inférieures à celles obtenues en présence de fibres de verre (σ = 65 MPa et E = 2,2 GPa)
This study deals with the development of polylactide based composites by RTM (Resin Transfer Molding). It focuses on the in-situ ring opening polymerization (ROP) of L-lactide in the RTM process in order to obtain, in a single step, a composite with a biobased, biodegradable and biocompatible matrix, presenting a good impregnation of the fibers by the matrix for a high reinforcement rate. First, preliminary mass polymerization tests (solvent-free) of L-lactide in flasks at the gram scale and in the absence of reinforcement were carried out. These experiments enable to choose the initial conditions enabling to reach high molecular mass PLLA matrices (Mn = 70 000 - 100 000 g.mol-1) containing the lowest residual L-lactide content (conversions up to 90 %). These characteristics are indeed essential to reach optimal thermomechanical properties of the PLLA matrix, suitable for composite applications. Polymerization tests on a gram scale in the presence of fibers of different kinds have then been carried out in order to evaluate their influence on the polymerization. Woven glass fibers display the least influence (conversion and molecular masses up to 90% and 70 000 g.mol-1, respectively). The experimental conditions determined above have been first transposed and adjusted for the production by RTM of polylactide/glass fiber composites obtained from L-lactide catalyzed by tin octoate. The RTM process was optimized by varying different experimental parameters such as the monomer mass, catalyst concentration, fiber quantity, tank heating, injection pressure and mold pressure and temperature. The physico-chemical and mechanical properties of the composites obtained were also studied. PLLA/glass fiber composites display conversions up to 95% and molar masses of up to 80 000 g.mol-1. The RTM conditions show no influence on the thermal (Tg = 50 °C; Tf = 170 °C) and structural (crystallization in the α phase) properties of the polylactide matrix. In addition, the tensile strength and Young's modulus of those composites can reach 200 MPa and 6 GPa respectively. The last part concerns the production of PLLA matrix composites by RTM process in the presence of catalysts presenting lower toxicity than tin octoate, the catalyst used industrially for the polymerization of L-lactide. Catalysts based on titanium, zinc, magnesium and calcium were consequently studied, but only the zinc catalyst leads to a material suitable for composite application (conversion and Mn up to 90% and 30 000 g.mol-1). Although the resulting mechanical properties are lower than those obtained with the tin catalyst (σ = 93 MPa and E = 3,3 GPa).Finally, the use of recycled fibers as the reinforcement instead of glass fibers was also studied in the presence of tin octoate. Although the high conversions (95-98%) and molar masses (Mn up to 60 800 g.mol-1) have been achieved, the resulting mechanical properties are much lower than those obtained in the presence of glass fibers (σ = 65 MPa and E = 2,2 GPa)
APA, Harvard, Vancouver, ISO, and other styles
2

Louisy, Elodie. "Synthèse de composites à matrice polylactide par procédé RTM (Resin Transfer Molding)." Electronic Thesis or Diss., Université de Lille (2018-2021), 2019. http://www.theses.fr/2019LILUR037.

Full text
Abstract:
Cette étude concerne l’élaboration de composites à matrice polylactide par procédé RTM (Resin Transfer Molding). Elle se focalise sur la polymérisation par ouverture de cycle (POC) in situ, du L-lactide, en procédé RTM avec comme objectif d’obtenir en une seule étape de synthèse, un composite présentant une matrice biosourcée, biodégradable et biocompatible, avec une bonne imprégnation des fibres par la matrice pour un taux de renfort élevé. Dans un premier temps, des essais préliminaires de polymérisation en masse (sans solvant) du L-lactide en ballon à l’échelle du gramme et en l’absence de renfort ont été réalisés. Ces expériences ont permis de déterminer les conditions initiales permettant l’obtention de matrices PLLA présentant le moins de L-lactide résiduel possible (conversions supérieures à 90 %) et les masses molaires les plus élevées (Mn = 70 000 - 100 000 g.mol-1). Ces caractéristiques sont en effet primordiales pour avoir des propriétés thermomécaniques optimales de la matrice PLLA et adaptées à des applications composites. Cette étude a été suivie d’essais de polymérisation, toujours à l’échelle du gramme, en présence de fibres de différentes natures afin d’étudier leur influence sur la polymérisation, les fibres présentant le moins d’influence étant les fibres de verre tissées (conversion et masses molaires supérieures à 90 % et 70 000 g.mol-1, respectivement). Les conditions expérimentales déterminées précédemment ont été transposées et ajustées pour l’élaboration, en procédé RTM, de composites polylactide/fibres de verre par polymérisation du L-lactide catalysée par l’octanoate d’étain. L’optimisation du procédé RTM a été réalisé en faisant varier la masse de monomère, la concentration en catalyseur, la quantité de fibres, le mode de chauffe de la cuve, la pression d’injection et la pression et température dans le moule. Les propriétés physico-chimiques et mécaniques de composites obtenus ont été également étudiées. Les composites obtenus présentent des conversions de plus de 95 % et des masses molaires pouvant atteindre 80 000 g.mol-1. Les conditions RTM n’influencent pas les propriétés thermiques (Tg = 50 °C ; Tf = 170 °C) et structurales (cristallisation en phase α) du polylactide matricielle. De plus les résistances à la traction et modules d’Young des composites PLLA/fibres de verre peuvent atteindre les 200 MPa et 6 GPa respectivement. La dernière partie concerne l’élaboration de composites à matrice PLLA par procédé RTM en présence de catalyseurs présentant une plus faible toxicité, afin de remplacer l’octanoate d’étain, catalyseur de référence pour la polymérisation du L-lactide qui présente cependant une certaine toxicité et qui pourrait dans un futur proche être proscrit des procédés industriels. Des catalyseurs à base de titane, zinc, magnésium et calcium ont ainsi été étudiés, mais seul le catalyseur de zinc conduit à un matériau satisfaisant pour une application composite (conversion supérieure à 90 % et Mn supérieure à 30 000 g.mol-1), bien que les propriétés mécaniques résultantes soient inférieures à celles obtenues avec le catalyseur d’étain (σ = 93 MPa et E = 3,3 GPa). Enfin, l’utilisation de fibres recyclées en tant que renfort a également été étudiée. Bien que les hautes conversions (95-98 %) et masses molaires (Mn jusqu’à 60 800 g.mol-1) aient été atteintes, les propriétés mécaniques résultantes sont bien inférieures à celles obtenues en présence de fibres de verre (σ = 65 MPa et E = 2,2 GPa)
This study deals with the development of polylactide based composites by RTM (Resin Transfer Molding). It focuses on the in-situ ring opening polymerization (ROP) of L-lactide in the RTM process in order to obtain, in a single step, a composite with a biobased, biodegradable and biocompatible matrix, presenting a good impregnation of the fibers by the matrix for a high reinforcement rate. First, preliminary mass polymerization tests (solvent-free) of L-lactide in flasks at the gram scale and in the absence of reinforcement were carried out. These experiments enable to choose the initial conditions enabling to reach high molecular mass PLLA matrices (Mn = 70 000 - 100 000 g.mol-1) containing the lowest residual L-lactide content (conversions up to 90 %). These characteristics are indeed essential to reach optimal thermomechanical properties of the PLLA matrix, suitable for composite applications. Polymerization tests on a gram scale in the presence of fibers of different kinds have then been carried out in order to evaluate their influence on the polymerization. Woven glass fibers display the least influence (conversion and molecular masses up to 90% and 70 000 g.mol-1, respectively). The experimental conditions determined above have been first transposed and adjusted for the production by RTM of polylactide/glass fiber composites obtained from L-lactide catalyzed by tin octoate. The RTM process was optimized by varying different experimental parameters such as the monomer mass, catalyst concentration, fiber quantity, tank heating, injection pressure and mold pressure and temperature. The physico-chemical and mechanical properties of the composites obtained were also studied. PLLA/glass fiber composites display conversions up to 95% and molar masses of up to 80 000 g.mol-1. The RTM conditions show no influence on the thermal (Tg = 50 °C; Tf = 170 °C) and structural (crystallization in the α phase) properties of the polylactide matrix. In addition, the tensile strength and Young's modulus of those composites can reach 200 MPa and 6 GPa respectively. The last part concerns the production of PLLA matrix composites by RTM process in the presence of catalysts presenting lower toxicity than tin octoate, the catalyst used industrially for the polymerization of L-lactide. Catalysts based on titanium, zinc, magnesium and calcium were consequently studied, but only the zinc catalyst leads to a material suitable for composite application (conversion and Mn up to 90% and 30 000 g.mol-1). Although the resulting mechanical properties are lower than those obtained with the tin catalyst (σ = 93 MPa and E = 3,3 GPa).Finally, the use of recycled fibers as the reinforcement instead of glass fibers was also studied in the presence of tin octoate. Although the high conversions (95-98%) and molar masses (Mn up to 60 800 g.mol-1) have been achieved, the resulting mechanical properties are much lower than those obtained in the presence of glass fibers (σ = 65 MPa and E = 2,2 GPa)
APA, Harvard, Vancouver, ISO, and other styles
3

Sas, Hatice Sinem. "Modeling Of Particle Filled Resin Impregnation In Compression Resin Transfer Molding." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612158/index.pdf.

Full text
Abstract:
Compression Resin Transfer Molding (CRTM) is an advanced liquid molding process for producing continuous fiber-reinforced composite parts in relatively large dimensions and with high fiber volume fractions. This thesis investigates this process for the purpose of producing continuous fiber reinforced composites with particle fillers. In many composites, fillers are used within the resin for various reasons such as cost reduction and improvement of properties. However, the presence of fillers in a process involving resin impregnation through a fibrous medium can result in a composite with non-homogeneous microstructure and properties. This work aims to model the resin impregnation and particle filtration during injection and compression stages of the process. For this purpose, a previously developed particle filtration model is adapted to CRTM. An appropriate commercial software tool is used for numerical solution after a survey of available packages. The process is analyzed based on the developed model for various process scenarios. The results of this study aim to enhance the understanding of particle-filled resin impregnation and particle filtration phenomena in the CRTM process and are likely to be used towards designing optimum process configurations for a desired outcome in the future.
APA, Harvard, Vancouver, ISO, and other styles
4

Akgul, Eralp. "Effects Of Mold Temperature And Vacuum In Resin Transfer Molding." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607952/index.pdf.

Full text
Abstract:
The purpose of this study was to investigate the effects of mold temperature, initial resin temperature, and the vacuum, applied at resin exit ports, on the mechanical properties of epoxy matrix woven glasss fiber reinforced composite specimens produced by Resin Transfer Molding (RTM). For this purpose, six different mold temperatures (25º
, 40º
, 60º
, 80º
, 100º
, and 120º
C), two initial resin temperatures (15º
and 28º
C), and vacuum (0.03 bar) and without vacuum (~1 bar) conditions were used. Specimens were characterized by using ultrasonic (C-Scan) inspection, mechanical tests (Tensile, Flexural, Impact), thermal analyses (Ignition Loss, TGA) and scanning electron microscopy (SEM). It was generally observed that mechanical properties of the specimens produced with a mold temperature of 60º
C were the best (e.g. 16%, 43%, and 26% higher tensile strength, Charpy impact toughness and flexural strength values, respectively). When vacuum was not applied, the percentage of &ldquo
voids&rdquo
increased leading to a decrease in mechanical properties such as 26% in Charpy impact toughness and 5% in tensile and flexural strength. Lower initial resin temperature also decreased mechanical properties (e.g. 14% in tensile strenght and 18% in Charpy impact toughness).
APA, Harvard, Vancouver, ISO, and other styles
5

Cioffi, Maria Odila Hilário. "Resina epóxi reforçada com tecido de carbono não dobrável por processo RTM /." Guaratinguetá : [s.n.], 2011. http://hdl.handle.net/11449/106718.

Full text
Abstract:
Banca: Herman Jacobus Cornelis Voorwald
Banca: Maysa Furlan
Banca: Sergio Frascino Muller de Almeida
Banca: Durval Rodrigues Junior
Banca: Paulo Roberto Mel
Resumo: Com o objetivo de ganhar competitividade no mercado internacional e contribuir para o desenvolvimento tecnológico no país, o presente trabalho apresenta a técnica de processamento de moldagem por transferência de resina (RTM), utilizada na fabricação de materiais compósitos estruturais e ainda pouco estudada no Brasil. Os compósitos processados por essa técnica apresentam maior fração volumétrica de fibras, melhor acabamento superficial e pouca ou nenhuma necessidade de acabamento do componente produzido. Este trabalho compreende a caracterização de compósitos produzidos com resina epóxi monocomponente RTM6 e o tecido não dobrável de fibra de carbono. Os compósitos produzidos pela Hexcel Composites foram analisados pela técnica de ultrassom C-Scan e os resultados mostraram que os laminados processados estão homogêneos quanto à impregnação. Ensaios mecânicos mostram que os laminados com tecido apresentam características comparáveis à dos compósitos produzidos em autoclave com maiores porcentagens de reforço. Em fadiga, os laminados apresentaram um alto e curto intervalo, com tensões próximas à de tração. Quanto ao comportamento térmico observou-se melhora nas propriedades com a adição do reforço de fibras de carbono, que promoveram o aumento da temperatura de transição vítrea (Tg). Quanto ao comportamento viscoelástico, foi observado a influencia da temperatura e freqüência no material. Considerando as propriedades mecânicas e térmicas, ambos os compósitos foram classificados como adequados à aplicação proposta.
Abstract: Aiming at gaining competitiveness on international market and contribute with technological development in the country, this work presents a processing technique of resin transfer molding (RTM), used to manufacture structural composites that Brazilian researches have yet few background. Composites processed by this method have a higher volume fraction of fibers, better surface finish, and requires little or none surface finish of the final component. This work includes the characterization of composites made with RTM6 monocomponent epoxy resin and carbon non-crimp fabric (NCF). Composites produced by Hexcel Composites were analyzed by C-scan ultrasound technique, which showed a homogeneous impregnation of the processed panels. Mechanical tests showed that RTM composites properties are comparable to those of autoclaving composites with higher fiber volume fraction. In fatigue, composites showed high and short interval, close to ultimate tensile strength (UTS), with an interval between 60-75% of UTS. Regarding the thermal behavior, it was observed an improvement in properties with the addition of carbon fiber reinforcement, which caused an increase in Tg. In regard to the viscoelastic behavior, it was observed the temperature and frequency influence on the material. Considering these mechanical and thermal properties, both composites are considered suitable for the application proposal.
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Yeonhee. "An efficient analysis of resin transfer molding process using extended finite element method." Phd thesis, Saint-Etienne, EMSE, 2013. http://tel.archives-ouvertes.fr/tel-00937556.

Full text
Abstract:
Numerical simulation for Resin Transfer Molding (RTM) manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions.Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with simple channel or radial flow models. Several application examples are analyzed to demonstrate ability of this method. A wind turbine blade is also treated as industrial application. Finally, a Graphic User Interface (GUI) tool is developed so as to make easy the pre/post-processing of the simulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Miskbay, Onur Adem. "Process Characterization Of Composite Structures Manufactured Using Resin Impregnation Techniques." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610351/index.pdf.

Full text
Abstract:
The aim of this study is to investigate and compare the properties of two layer carbon epoxy composite plates manufactured using various resin impregnation techniques
Resin Transfer Molding (RTM), Light RTM (LRTM), Vacuum Assisted RTM (VARTM) and Vacuum Packaging (VP). Throughout the study a different packaging method was developed and named Modified Vacuum Packaging (BP). The mechanical properties of composite plates manufactured are examined by tensile tests, compressive tests, in-plane shear tests and their thermal properties are examined by Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) tests. All tests were performed according to suitable ASTM standards. The performance of specimens from each process was observed to vary according to the investigated property
however the VP process showed the highest performance for most properties. For most of the tests, VARTM, LRTM and RTM methods were following VP process in terms of performance, having close results with each other.
APA, Harvard, Vancouver, ISO, and other styles
8

Agogué, Romain. "Analyse expérimentale et numérique de la fabrication de pièces composites par le procédé RTM." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00628046.

Full text
Abstract:
Cette thèse s'intéresse à la fabrication de pièces composites par le procédé Resin Transfert Molding (ou RTM), appliquée à des tubes de protection thermiques. Plus particulièrement, cette thèse vise à démontrer la faisabilité d'utiliser ce procédé pour la fabrication cette pièce complexe. La phase d'imprégnation de préformes sèches est plus particulièrement étudiée. Après mise en oeuvre, cette pièce peut présenter des défauts tels que de la porosité ou des déplacements de plis constituant la préforme. L'objectif de cette thèse est donc de comprendre l'origine de ces défauts et de minimiser voire de d'empêcher leur apparition. Pour cela, une démarche expérimentale a été mise en place. Celle ci comprend la réalisation d'un pilote de laboratoire permettant d'appliquer différentes conditions d'imprégnation aux préformes considérées. La perméabilité des renforts considérés a aussi été évaluée à différentes échelles grâce à l'utilisation de moyen dédiés à l'échelle macroscopique (banc de perméabilité planaire et transverse), et grâce à l'utilisation d'un code de calcul se basant sur des images de tomographie synchrotron à l'échelle microscopique. Enfin, une analyse de la qualité des prototypes réalisés a été menée en suivant des procédures mises en place lors de ce projet et les résultats analysés et mis en relation avec les conditions de mise en oeuvre. Cette approche expérimentale est couplée aux simulations numériques de la phase d'imprégnation que nous avons aussi mise en oeuvre au cours de cette thèse. Par l'utilisation combinée de la simulation numérique et des essais expérimentaux, nous avons défini des critères estimant le risque d'apparition des défauts. Ces critères ont montré leur efficacité sur les solutions innovantes que nous avons proposées puisque répondant aux exigences du cahier des charges industriel.
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Van-Hau. "Characterization and modeling of flax fiber reinforced composites manufacturing by resin transfer molding process." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10156.

Full text
Abstract:
Ce travail de thèse présente la caractérisation expérimentale de fibres de lins et une modélisation de l’écoulement de résine lors du procédé de Resin Transfer Molding (RTM) utilisant ces mêmes fibres. La variation du diamètre des filaments de lins immergés dans différents liquides tests est caractérisée par observation au microscope. Le taux et la vitesse d’absorption de liquides tests dans les fibres sont ensuite obtenus par centrifugation. Un nouveau modèle de perméabilité est ainsi développé afin de prendre en compte les effets du gonflement des fibres sur la perméabilité quelque soit le liquide test considéré. Le modèle est validé après comparaison avec les perméabilités expérimentales. Les propriétés de mouillage des fibres de lin en présence de différents liquides tests sont mesurées en utilisant un tube capillaire et une mèche de fibres de lin. Un modèle prenant en compte le gonflement des fibres ainsi que le phénomène d’absorption est proposé pour déterminer la tension de surface et l’angle de contact décrivant la mouillabilité. L’écoulement insaturé dans le tissu de fibres de lin est modélisé en utilisant l’équation de conservation de la masse, la loi de Darcy ainsi que les modèles de gonflement et d’absorption précédemment définis. Le flux massique absorbé dans les fibres et la modification du taux local de fraction volumique sont introduits par l’intermédiaire de termes puits dans l’équation de conservation de la masse. La variation de perméabilité spatiale et temporelle non uniforme peut ainsi être considérée dans le modèle complet proposé. Ce modèle est validé par comparaison avec un suivi expérimental de l’écoulement dans une préforme de fibres de lin
This thesis presents an experimental characterization of flax fiber and a modeling of the resin flow during the resin transfer molding process with flax preform. The change of diameter of flax fiber filament immersed in different test liquids was characterized using optical microscope. The sorption rate of the resin mass into the fiber filament immersed in the test liquids was also experimentally characterized using centrifuge test. A new permeability model was proposed to predict the permeability taking into account the fiber swell effect, regardless of test liquid and the model was validated by a comparison with the experimental measurement data. The wetting properties of flax fiber in contact with different test liquids were measured by capillary rise test using flax fiber yarn and a new model was established to obtain surface tension and contact angle by considering the fiber swell effect and the liquid sorption into the fiber filament. The unsaturated resin flow in the flax fiber preform was modeled by modifying the conventional mass conservation equation and Darcy’s law in order to take into account the effects of fiber swell and liquid sorption. The mass rate absorbed into the fiber and the change of fiber volume were considered as sink terms in the mass conservation equation. The permeability change due to the fiber swell was modeled in terms of time of fiber’s immersion in liquid. In particular, the sink term and permeability were considered as spatially and temporally non-uniform in the flow model. The proposed model was validated by a comparison with the experimental measurement of flow advancement in the flax fiber preform
APA, Harvard, Vancouver, ISO, and other styles
10

Häffelin, Daniel [Verfasser]. "Verfahren zur Integration von Folien in den RTM-Prozess (resin transfer molding) für endlosfaserverstärkte Schalenteile / Daniel Häffelin." München : Verlag Dr. Hut, 2017. http://d-nb.info/1137023708/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Resin Transfer Molding (RTM)"

1

Center, Langley Research, ed. Development of stitched/RTM primary structures for transport aircraft. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

P, Benjamin William, and Beckwith Scott W, eds. Resin transfer molding. Covina, CA: SAMPE, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

(Firm), Knovel, ed. Resin transfer moulding. London: Chapman & Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Potter, Kevin. Resin Transfer Moulding. Dordrecht: Springer Netherlands, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Resin transfer moulding. London: Chapman & Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Falcone, and Langley Research Center, eds. Resin transfer molding of textile composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kötte, Rolf. Der Resin-Transfer-Molding-Prozess: Analyse eines Harzinjektionsverfahrens. Köln: TÜV Rheinland, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

M, Kruckenberg Teresa, and Paton Rowan, eds. Resin transfer moulding for aerospace structures. Dordrecht: Kluwer Academic, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

C, Loos Alfred, and United States. National Aeronautics and Space Administration., eds. A cure process model for resin transfer molding of advanced composites. Blacksburg, Va: College of Engineering, Virginia Polytechnic Institute and State University, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1968-, Hammond Vincent H., and United States. National Aeronautics and Space Administration., eds. Verification of a two-dimensional infiltration model for the resin transfer molding process. Blacksburg, Va: Center for Composite Materials, Virginia Polytechnic and State University, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Resin Transfer Molding (RTM)"

1

Liebl, Michael, Jonas Holder, Tobias Mohr, Albert Dorneich, Florian Liebgott, and Peter Middendorf. "Development, Implementation and Evaluation of a Prototype System for Data-Driven Optimization of a Preforming Process." In Advances in Automotive Production Technology – Towards Software-Defined Manufacturing and Resilient Supply Chains, 296–306. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27933-1_27.

Full text
Abstract:
AbstractModern production of fiber reinforced composites via the preforming process is widely used in the industry. A common way to create dry, semi-finished fiber products is forming or draping a textile into a three-dimensional component geometry. The punch and die process is often used for resin transfer molding (RTM) composite manufacturing. Due to the major influence of the preforming step on the later mechanical performance of the component, a detailed knowledge of the fiber architecture is beneficial.To enable in-situ monitoring of the specific deformation of a woven fabric, a novel kind of single-use two-dimensional strain sensors has already been developed and characterized. We show that by using industrial communication standards, data from various data sources can be consolidated in an edge computer and used to improve the process. To this end, we developed the hardware and firmware of a device that reads out the printed strain sensors and transfers the data to the edge device via IO-Link. In addition, the edge device collects data from a programmable logic controller and is capable of connecting further IO-Link sensors.Our demonstrator is intended as a proof of concept for in-situ monitoring, data-driven analysis and improvement of the punch and die process and will be further developed. We propose a machine learning-based edge analytics approach for detecting defects and increasing the preforming quality during the draping process. Forming tests with the double-dome benchmark geometry and the carbon fabric which is suitable for industry have been carried out to validate our prototype system.
APA, Harvard, Vancouver, ISO, and other styles
2

Shevtsov, S. N., M. B. Flek, J. K. Wu, I. V. Zhilyaev, and J. P. Huang. "Multi-Objective Optimization of Distributed RTM (Resin Transfer Molding) Process for Curing the Large Composite Structures with Varied Thickness." In Springer Proceedings in Physics, 71–85. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03749-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Potter, Kevin. "RTM theory." In Resin Transfer Moulding, 1–27. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Potter, Kevin. "Materials for RTM." In Resin Transfer Moulding, 28–51. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Potter, Kevin. "Flexible tool RTM." In Resin Transfer Moulding, 167–79. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Potter, Kevin. "Thick section RTM." In Resin Transfer Moulding, 180–83. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Potter, Kevin. "Troubleshooting RTM processing problems." In Resin Transfer Moulding, 188–99. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Potter, Kevin. "RTM mould tool design." In Resin Transfer Moulding, 74–145. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Potter, Kevin. "Component design for RTM." In Resin Transfer Moulding, 152–66. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Potter, Kevin. "Known applications of RTM processing." In Resin Transfer Moulding, 184–87. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0021-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Resin Transfer Molding (RTM)"

1

Golestanian, Hossein. "Resin Velocity and Pressure Distribution in Resin Transfer Molding of a Composite Cylinder." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72359.

Full text
Abstract:
Resin Transfer Molding (RTM) process in the manufacturing of a composite cylinder is investigated. Resin flow in the woven fiber mat is modeled as flow through porous media to determine resin velocity and pressure distribution along the part. Five-harness carbon and eight-harness fiberglass mats with epoxy resin composites are investigated. Fiber mat permeability for the two fiber types are determined experimentally. These values are then employed in numerical models to simulate the injection cycle of the RTM process. ANSYS finite element software is used to perform the analysis. The results indicate that resin velocity in fiberglass mats is almost six times the velocity in carbon fiber mats. This is due to the higher permeability of fiberglass mats. The sharp drop in the resin velocity into carbon fibers indicates that flow problems will exist in the manufacturing of large carbon/epoxy parts with RTM processes.
APA, Harvard, Vancouver, ISO, and other styles
2

Minaie, B., Y. F. Chen, and A. M. Mescher. "Identification of Preform Permeability Distribution in Resin Transfer Molding." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1237.

Full text
Abstract:
Abstract This paper presents a numerical scheme that directly calculates the permeability field of the preform during the Resin Transfer Molding (RTM) process. The measured filling front locations as well as the corresponding inlet conditions are used in the proposed scheme to calculate the permeability field. The proposed scheme employs a numerical optimization algorithm to minimize a cost function that leads to the permeability filed of the preform. A time step independent RTM filling algorithm is utilized as a computational kernel to generate the cost function for the subsequent iterative minimization. The proposed permeability identification scheme is applied to test problems that involve isotropic and anisotropic permeability distribution within the perform. The results from these test problems verify the applicability of the proposed scheme.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Y. F., B. Minaie, and A. M. Mescher. "Regulating Filling Pattern for Optimum Design of Resin Transfer Molding." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1238.

Full text
Abstract:
Abstract During resin transfer molding (RTM), dry spot formation and air entrapment during the filling stage often lead to inferior parts and high scrap rate. These problems are usually caused by improper design of inlet conditions and vent locations that prevent the Last Point to Fill (LPF) location from coinciding with the preset vent location. This paper presents a methodology to design the RTM process with a desired filling pattern free of dry spots. Unlike the traditional filling simulation that predicts the filling pattern using prescribed inlet conditions and the specification of the preform permeability field, this methodology calculates the optimum inlet conditions based on the specification of the desired filling pattern and the prescription of preform permeability. The use of this algorithm greatly enhances the process design capability by reducing trial-and-error procedures that use traditional direct filling simulation as a primary process design tool. The numerical algorithm is described along with RTM design example showing that use of the proposed methodology results in the LPF location coinciding with the preset vent location.
APA, Harvard, Vancouver, ISO, and other styles
4

Correia, N. C., F. Robitaille, A. C. Long, C. D. Rudd, P. Sˇima´cˇek, and S. G. Advani. "Use of Resin Transfer Molding Simulation to Predict Flow, Saturation and Compaction in the VARTM Process." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39696.

Full text
Abstract:
Vacuum Assisted Resin Transfer Molding (VARTM) and Resin Transfer Molding (RTM) are among the most significant and widely used Liquid Composite manufacturing processes. In RTM preformed-reinforcement materials are placed in a mold cavity, which is subsequently closed and infused with resin. RTM numerical simulations have been developed and used for a number of years for gate assessment and optimization purposes. Available simulation packages are capable of describing/predicting flow patterns and fill times in geometrically complex parts manufactured by the resin transfer molding process. Unlike RTM, the VARTM process uses only one sided molds (tool surfaces) where performs are placed and enclosed by a sealed vacuum bag. To improve the delivery of the resin, a distribution media is sometimes used to cover the preform during the injection process. Attempts to extend the usability of the existing RTM algorithms and software packages to the VARTM domain have been made but there are some fundamental differences between the two processes. Most significant of these are 1) the thickness variations in VARTM due to changes in compaction force during resin flow 2) fiber tow saturation, which may be significant in the VARTM process. This paper presents examples on how existing RTM filling simulation codes can be adapted and used to predict flow, thickness of the preform during the filling stage and permeability changes during the VARTM filling process. The results are compared with results obtained from an analytic model as well as with limited experimental results. The similarities and differences between the modeling of RTM and VARTM process are highlighted.
APA, Harvard, Vancouver, ISO, and other styles
5

Hsiao, Kuang-Ting. "Uncertainty Modeling of Residual Stress Development in Polymeric Composites Manufactured With Resin Transfer Molding Process." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42226.

Full text
Abstract:
Resin Transfer Molding (RTM) is an advanced process to manufacture high quality thermoset polymeric composites. The quality of the composite depends on the resin infusion stage and the cure stage during the RTM process. The resin curing is a complex exothermic process which involves resin mechanical property evolution, resin volume shrinkage, thermal expansion, heat transfer, and chemical reaction. Since the fibers and resin have many differences in their physical properties, the composite cure stage inevitably introduces the undesired residual stress to the composite parts. As the residual stress could sometimes generate local matrix failure or degrade the performance of the composite, it is important to model and minimize the residual stress. This paper presents a model to predict the residual stress development during the composite cure process. By slightly disturbing the manufacturing parameters such as the mold heating cycle and the cure kinetics of polymer, the variations of residual stress development during the RTM process can be modeled and compared. A parametric uncertainty study of the residual stress development in the polymeric composite manufactured with RTM will be performed and discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

D’Silva, Kiran M., Su-Seng Pang, and Kurt C. Schulz. "Effects of Weirs on the Resin Transfer Molding Process." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17001.

Full text
Abstract:
Abstract Low mold filling time and improper fiber wetting are the main problems faced by the manufacturers applying the Resin Transfer Molding (RTM) process. The objective of this work was to minimize these problems and to study the effect of weirs on the RTM process. A mold was designed such that the lower mold plate contains two weirs, one at the resin inlet port and the other at the outlet port. The purpose of adding the weirs is to provide a continuous inlet stream near the resin inlet port and to cause backpressure near the outlet port to induce complete mold filling. Laminated plates were prepared using glass fibers and epoxy resin (combination of EPON resin-862 and curing agent W). The test parameters investigated, such as void contents, dry spots and mold filling time, were compared with those of samples that were prepared without the use of weirs. It was found that the presence of weirs resulted in significant elimination of dry spots, minimization of void contents and a reduction in mold filling time. As a result, the cost required to manufacture composite parts can be reduced by the use of weirs. In addition to the experimental investigation, a computer simulation (using LCMFLOT software) of resin flow inside the mold cavity was conducted. Many simulations were run in order to optimize the height and shape of the weir. Rectangular weirs of height 2.54 mm showed minimum mold fill time. It was found that the results obtained from the experimental work and flow simulations are in good agreement. Based on this work, it is evident that complex parts can be produced in less cycle time if weirs are positioned at appropriate locations.
APA, Harvard, Vancouver, ISO, and other styles
7

Kang, Moon Koo, and H. Thomas Hahn. "Mechanics of Microvoid Formation During Resin Transfer Molding." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1201.

Full text
Abstract:
Abstract In resin transfer molding (RTM), the formation of air voids within fiber preform depends on the flow rate and surface tension of the resin during mold filling. The resin velocity in regions between fiber tows is mostly controlled by the induced pressure gradient whereas the resin flow within each fiber tow depends more on the capillary pressure. As these two flows compete in their advancement, the size and location of air voids vary from point to point. Capillary number, defined as the ratio of the viscous force to the capillary force, has been found through experiments to be the critical parameter controlling the type of microvoids. The present paper proposes a model that can account for the dependence of the size and quantity of air voids on the capillary number. At low capillary numbers, the soaking flow within individual fiber tows dominates mold filling, and hence voids are more likely to form between fiber tows. At high capillary numbers, the situation is reversed so that the inter-fiber-tow flow outruns the intra-fiber-tow flow resulting in voids within fiber tows. At an optimum capillary number, the two flows are comparable, minimizing the possibility of void formation. The proposed model can quantify the effect of capillary number on void formation. The model has been validated through experiments.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Chuck, Shunliang Jiang, Ben Wang, and Kerang Han. "Process Design of Resin Transfer Molding With Computer Simulation." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1059.

Full text
Abstract:
Abstract Resin transfer molding is one of the most common fabrication methods for composite materials. It is attractive due to its high volume, high performance, and low cost manufacturing of polymer composites. In this process, a dry preform of reinforcing fibers is placed inside a closed mold; then the resin is injected into the mold cavity. The composite part can be removed from the mold after the resin cures. This paper surveys current issues in the resin transfer molding process and focuses on mold filling and simulation. The Control Volume Finite Element Method is applied to simulate the process. The 2-D and 3-D computational methods are presented. The simulation program was developed with C language by the authors. The 2-D and 3-D models were integrated in the program. In real applications, the 2-D elements and 3-D elements can be applied simultaneously according to the specific requirements. MSC/PATRAN 3 software (MacNeal-Schwendler Corporation) was used to generate the finite element mesh and display the results. Some case studies are conducted to demonstrate the application of the computer simulation to RTM process design.
APA, Harvard, Vancouver, ISO, and other styles
9

DEREIMS, ARNAUD, SELINA ZHAO, HANG YU, PRAVEEN PASUPULETI, MARK DOROUDIAN, WILLIAM RODGERS, and VENKAT AITHARAJU. "Compression Resin Transfer Molding (C-RTM) Simulation Using a Coupled Fluid-solid Approach." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guzman, W., L. Hamernik, and J. Wiggins. "High-Performance Properties of a Resin Transfer Molding (RTM) Imide Oligomer Polymer Matrix." In CAMX 2022. NA SAMPE, 2022. http://dx.doi.org/10.33599/nasampe/c.22.0073.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Resin Transfer Molding (RTM)"

1

Rempe, Dale A. Process Control for Resin Transfer Molding (RTM). Fort Belvoir, VA: Defense Technical Information Center, February 1996. http://dx.doi.org/10.21236/ada305374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Deteresa, S., W. Stein, and V. R. Yagi. Design Analysis of Resin Transfer Molding (RTM) of Fiber Composite Panels Final Report CRADA No. TC-333-92. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1430941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deteresa, S., and W. Stein. Design Analysis of Resin Transfer Molding (RTM) of Fiber Composite Panels Final Report CRADA No. TC-333-92. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/756982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mather, Patrick T. Hyperbranched Polymers for Resin Transfer Molding. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada468819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jamison, G. M., and L. A. Domeier. Composite fabrication via resin transfer molding technology. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/239320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fink, B. K., S. H. McKnight, J. W. Gillespie, and Jr. Co-Injection Resin Transfer Molding for Optimization of Integral Armor. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada363416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fink, Bruce K., Emanuele F. Gillio, Geoffrey P. McKnight, John W. Gillespie, Advani Jr., and Suresh G. Co-Injection Resin Transfer Molding of Vinyl-Ester and Phenolic Composites. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada373528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Larimore, Zachary J., Jr Holmes, and Larry R. Tailoring Fiber Volume Fraction of Vacuum-assisted Resin Transfer Molding Processed Composite Laminates by Bladder-bag Resin Reservoir. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada570166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henz, Brian J., Kumar K. Tamma, Ram Mohan, and Nam D. Ngo. Process Modeling of Composites by Resin Transfer Molding: Sensitivity Analysis for Non-Isothermal Considerations. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada400221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cairns, Douglas S., and Scott M. Rossel. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/918294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography