To see the other types of publications on this topic, follow the link: Resin Transfer Molding (RTM).

Dissertations / Theses on the topic 'Resin Transfer Molding (RTM)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Resin Transfer Molding (RTM).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Louisy, Elodie. "Synthèse de composites à matrice polylactide par procédé RTM (Resin Transfer Molding)." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R037/document.

Full text
Abstract:
Cette étude concerne l’élaboration de composites à matrice polylactide par procédé RTM (Resin Transfer Molding). Elle se focalise sur la polymérisation par ouverture de cycle (POC) in situ, du L-lactide, en procédé RTM avec comme objectif d’obtenir en une seule étape de synthèse, un composite présentant une matrice biosourcée, biodégradable et biocompatible, avec une bonne imprégnation des fibres par la matrice pour un taux de renfort élevé. Dans un premier temps, des essais préliminaires de polymérisation en masse (sans solvant) du L-lactide en ballon à l’échelle du gramme et en l’absence de renfort ont été réalisés. Ces expériences ont permis de déterminer les conditions initiales permettant l’obtention de matrices PLLA présentant le moins de L-lactide résiduel possible (conversions supérieures à 90 %) et les masses molaires les plus élevées (Mn = 70 000 - 100 000 g.mol-1). Ces caractéristiques sont en effet primordiales pour avoir des propriétés thermomécaniques optimales de la matrice PLLA et adaptées à des applications composites. Cette étude a été suivie d’essais de polymérisation, toujours à l’échelle du gramme, en présence de fibres de différentes natures afin d’étudier leur influence sur la polymérisation, les fibres présentant le moins d’influence étant les fibres de verre tissées (conversion et masses molaires supérieures à 90 % et 70 000 g.mol-1, respectivement). Les conditions expérimentales déterminées précédemment ont été transposées et ajustées pour l’élaboration, en procédé RTM, de composites polylactide/fibres de verre par polymérisation du L-lactide catalysée par l’octanoate d’étain. L’optimisation du procédé RTM a été réalisé en faisant varier la masse de monomère, la concentration en catalyseur, la quantité de fibres, le mode de chauffe de la cuve, la pression d’injection et la pression et température dans le moule. Les propriétés physico-chimiques et mécaniques de composites obtenus ont été également étudiées. Les composites obtenus présentent des conversions de plus de 95 % et des masses molaires pouvant atteindre 80 000 g.mol-1. Les conditions RTM n’influencent pas les propriétés thermiques (Tg = 50 °C ; Tf = 170 °C) et structurales (cristallisation en phase α) du polylactide matricielle. De plus les résistances à la traction et modules d’Young des composites PLLA/fibres de verre peuvent atteindre les 200 MPa et 6 GPa respectivement. La dernière partie concerne l’élaboration de composites à matrice PLLA par procédé RTM en présence de catalyseurs présentant une plus faible toxicité, afin de remplacer l’octanoate d’étain, catalyseur de référence pour la polymérisation du L-lactide qui présente cependant une certaine toxicité et qui pourrait dans un futur proche être proscrit des procédés industriels. Des catalyseurs à base de titane, zinc, magnésium et calcium ont ainsi été étudiés, mais seul le catalyseur de zinc conduit à un matériau satisfaisant pour une application composite (conversion supérieure à 90 % et Mn supérieure à 30 000 g.mol-1), bien que les propriétés mécaniques résultantes soient inférieures à celles obtenues avec le catalyseur d’étain (σ = 93 MPa et E = 3,3 GPa). Enfin, l’utilisation de fibres recyclées en tant que renfort a également été étudiée. Bien que les hautes conversions (95-98 %) et masses molaires (Mn jusqu’à 60 800 g.mol-1) aient été atteintes, les propriétés mécaniques résultantes sont bien inférieures à celles obtenues en présence de fibres de verre (σ = 65 MPa et E = 2,2 GPa)
This study deals with the development of polylactide based composites by RTM (Resin Transfer Molding). It focuses on the in-situ ring opening polymerization (ROP) of L-lactide in the RTM process in order to obtain, in a single step, a composite with a biobased, biodegradable and biocompatible matrix, presenting a good impregnation of the fibers by the matrix for a high reinforcement rate. First, preliminary mass polymerization tests (solvent-free) of L-lactide in flasks at the gram scale and in the absence of reinforcement were carried out. These experiments enable to choose the initial conditions enabling to reach high molecular mass PLLA matrices (Mn = 70 000 - 100 000 g.mol-1) containing the lowest residual L-lactide content (conversions up to 90 %). These characteristics are indeed essential to reach optimal thermomechanical properties of the PLLA matrix, suitable for composite applications. Polymerization tests on a gram scale in the presence of fibers of different kinds have then been carried out in order to evaluate their influence on the polymerization. Woven glass fibers display the least influence (conversion and molecular masses up to 90% and 70 000 g.mol-1, respectively). The experimental conditions determined above have been first transposed and adjusted for the production by RTM of polylactide/glass fiber composites obtained from L-lactide catalyzed by tin octoate. The RTM process was optimized by varying different experimental parameters such as the monomer mass, catalyst concentration, fiber quantity, tank heating, injection pressure and mold pressure and temperature. The physico-chemical and mechanical properties of the composites obtained were also studied. PLLA/glass fiber composites display conversions up to 95% and molar masses of up to 80 000 g.mol-1. The RTM conditions show no influence on the thermal (Tg = 50 °C; Tf = 170 °C) and structural (crystallization in the α phase) properties of the polylactide matrix. In addition, the tensile strength and Young's modulus of those composites can reach 200 MPa and 6 GPa respectively. The last part concerns the production of PLLA matrix composites by RTM process in the presence of catalysts presenting lower toxicity than tin octoate, the catalyst used industrially for the polymerization of L-lactide. Catalysts based on titanium, zinc, magnesium and calcium were consequently studied, but only the zinc catalyst leads to a material suitable for composite application (conversion and Mn up to 90% and 30 000 g.mol-1). Although the resulting mechanical properties are lower than those obtained with the tin catalyst (σ = 93 MPa and E = 3,3 GPa).Finally, the use of recycled fibers as the reinforcement instead of glass fibers was also studied in the presence of tin octoate. Although the high conversions (95-98%) and molar masses (Mn up to 60 800 g.mol-1) have been achieved, the resulting mechanical properties are much lower than those obtained in the presence of glass fibers (σ = 65 MPa and E = 2,2 GPa)
APA, Harvard, Vancouver, ISO, and other styles
2

Louisy, Elodie. "Synthèse de composites à matrice polylactide par procédé RTM (Resin Transfer Molding)." Electronic Thesis or Diss., Université de Lille (2018-2021), 2019. http://www.theses.fr/2019LILUR037.

Full text
Abstract:
Cette étude concerne l’élaboration de composites à matrice polylactide par procédé RTM (Resin Transfer Molding). Elle se focalise sur la polymérisation par ouverture de cycle (POC) in situ, du L-lactide, en procédé RTM avec comme objectif d’obtenir en une seule étape de synthèse, un composite présentant une matrice biosourcée, biodégradable et biocompatible, avec une bonne imprégnation des fibres par la matrice pour un taux de renfort élevé. Dans un premier temps, des essais préliminaires de polymérisation en masse (sans solvant) du L-lactide en ballon à l’échelle du gramme et en l’absence de renfort ont été réalisés. Ces expériences ont permis de déterminer les conditions initiales permettant l’obtention de matrices PLLA présentant le moins de L-lactide résiduel possible (conversions supérieures à 90 %) et les masses molaires les plus élevées (Mn = 70 000 - 100 000 g.mol-1). Ces caractéristiques sont en effet primordiales pour avoir des propriétés thermomécaniques optimales de la matrice PLLA et adaptées à des applications composites. Cette étude a été suivie d’essais de polymérisation, toujours à l’échelle du gramme, en présence de fibres de différentes natures afin d’étudier leur influence sur la polymérisation, les fibres présentant le moins d’influence étant les fibres de verre tissées (conversion et masses molaires supérieures à 90 % et 70 000 g.mol-1, respectivement). Les conditions expérimentales déterminées précédemment ont été transposées et ajustées pour l’élaboration, en procédé RTM, de composites polylactide/fibres de verre par polymérisation du L-lactide catalysée par l’octanoate d’étain. L’optimisation du procédé RTM a été réalisé en faisant varier la masse de monomère, la concentration en catalyseur, la quantité de fibres, le mode de chauffe de la cuve, la pression d’injection et la pression et température dans le moule. Les propriétés physico-chimiques et mécaniques de composites obtenus ont été également étudiées. Les composites obtenus présentent des conversions de plus de 95 % et des masses molaires pouvant atteindre 80 000 g.mol-1. Les conditions RTM n’influencent pas les propriétés thermiques (Tg = 50 °C ; Tf = 170 °C) et structurales (cristallisation en phase α) du polylactide matricielle. De plus les résistances à la traction et modules d’Young des composites PLLA/fibres de verre peuvent atteindre les 200 MPa et 6 GPa respectivement. La dernière partie concerne l’élaboration de composites à matrice PLLA par procédé RTM en présence de catalyseurs présentant une plus faible toxicité, afin de remplacer l’octanoate d’étain, catalyseur de référence pour la polymérisation du L-lactide qui présente cependant une certaine toxicité et qui pourrait dans un futur proche être proscrit des procédés industriels. Des catalyseurs à base de titane, zinc, magnésium et calcium ont ainsi été étudiés, mais seul le catalyseur de zinc conduit à un matériau satisfaisant pour une application composite (conversion supérieure à 90 % et Mn supérieure à 30 000 g.mol-1), bien que les propriétés mécaniques résultantes soient inférieures à celles obtenues avec le catalyseur d’étain (σ = 93 MPa et E = 3,3 GPa). Enfin, l’utilisation de fibres recyclées en tant que renfort a également été étudiée. Bien que les hautes conversions (95-98 %) et masses molaires (Mn jusqu’à 60 800 g.mol-1) aient été atteintes, les propriétés mécaniques résultantes sont bien inférieures à celles obtenues en présence de fibres de verre (σ = 65 MPa et E = 2,2 GPa)
This study deals with the development of polylactide based composites by RTM (Resin Transfer Molding). It focuses on the in-situ ring opening polymerization (ROP) of L-lactide in the RTM process in order to obtain, in a single step, a composite with a biobased, biodegradable and biocompatible matrix, presenting a good impregnation of the fibers by the matrix for a high reinforcement rate. First, preliminary mass polymerization tests (solvent-free) of L-lactide in flasks at the gram scale and in the absence of reinforcement were carried out. These experiments enable to choose the initial conditions enabling to reach high molecular mass PLLA matrices (Mn = 70 000 - 100 000 g.mol-1) containing the lowest residual L-lactide content (conversions up to 90 %). These characteristics are indeed essential to reach optimal thermomechanical properties of the PLLA matrix, suitable for composite applications. Polymerization tests on a gram scale in the presence of fibers of different kinds have then been carried out in order to evaluate their influence on the polymerization. Woven glass fibers display the least influence (conversion and molecular masses up to 90% and 70 000 g.mol-1, respectively). The experimental conditions determined above have been first transposed and adjusted for the production by RTM of polylactide/glass fiber composites obtained from L-lactide catalyzed by tin octoate. The RTM process was optimized by varying different experimental parameters such as the monomer mass, catalyst concentration, fiber quantity, tank heating, injection pressure and mold pressure and temperature. The physico-chemical and mechanical properties of the composites obtained were also studied. PLLA/glass fiber composites display conversions up to 95% and molar masses of up to 80 000 g.mol-1. The RTM conditions show no influence on the thermal (Tg = 50 °C; Tf = 170 °C) and structural (crystallization in the α phase) properties of the polylactide matrix. In addition, the tensile strength and Young's modulus of those composites can reach 200 MPa and 6 GPa respectively. The last part concerns the production of PLLA matrix composites by RTM process in the presence of catalysts presenting lower toxicity than tin octoate, the catalyst used industrially for the polymerization of L-lactide. Catalysts based on titanium, zinc, magnesium and calcium were consequently studied, but only the zinc catalyst leads to a material suitable for composite application (conversion and Mn up to 90% and 30 000 g.mol-1). Although the resulting mechanical properties are lower than those obtained with the tin catalyst (σ = 93 MPa and E = 3,3 GPa).Finally, the use of recycled fibers as the reinforcement instead of glass fibers was also studied in the presence of tin octoate. Although the high conversions (95-98%) and molar masses (Mn up to 60 800 g.mol-1) have been achieved, the resulting mechanical properties are much lower than those obtained in the presence of glass fibers (σ = 65 MPa and E = 2,2 GPa)
APA, Harvard, Vancouver, ISO, and other styles
3

Sas, Hatice Sinem. "Modeling Of Particle Filled Resin Impregnation In Compression Resin Transfer Molding." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612158/index.pdf.

Full text
Abstract:
Compression Resin Transfer Molding (CRTM) is an advanced liquid molding process for producing continuous fiber-reinforced composite parts in relatively large dimensions and with high fiber volume fractions. This thesis investigates this process for the purpose of producing continuous fiber reinforced composites with particle fillers. In many composites, fillers are used within the resin for various reasons such as cost reduction and improvement of properties. However, the presence of fillers in a process involving resin impregnation through a fibrous medium can result in a composite with non-homogeneous microstructure and properties. This work aims to model the resin impregnation and particle filtration during injection and compression stages of the process. For this purpose, a previously developed particle filtration model is adapted to CRTM. An appropriate commercial software tool is used for numerical solution after a survey of available packages. The process is analyzed based on the developed model for various process scenarios. The results of this study aim to enhance the understanding of particle-filled resin impregnation and particle filtration phenomena in the CRTM process and are likely to be used towards designing optimum process configurations for a desired outcome in the future.
APA, Harvard, Vancouver, ISO, and other styles
4

Akgul, Eralp. "Effects Of Mold Temperature And Vacuum In Resin Transfer Molding." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/2/12607952/index.pdf.

Full text
Abstract:
The purpose of this study was to investigate the effects of mold temperature, initial resin temperature, and the vacuum, applied at resin exit ports, on the mechanical properties of epoxy matrix woven glasss fiber reinforced composite specimens produced by Resin Transfer Molding (RTM). For this purpose, six different mold temperatures (25º
, 40º
, 60º
, 80º
, 100º
, and 120º
C), two initial resin temperatures (15º
and 28º
C), and vacuum (0.03 bar) and without vacuum (~1 bar) conditions were used. Specimens were characterized by using ultrasonic (C-Scan) inspection, mechanical tests (Tensile, Flexural, Impact), thermal analyses (Ignition Loss, TGA) and scanning electron microscopy (SEM). It was generally observed that mechanical properties of the specimens produced with a mold temperature of 60º
C were the best (e.g. 16%, 43%, and 26% higher tensile strength, Charpy impact toughness and flexural strength values, respectively). When vacuum was not applied, the percentage of &ldquo
voids&rdquo
increased leading to a decrease in mechanical properties such as 26% in Charpy impact toughness and 5% in tensile and flexural strength. Lower initial resin temperature also decreased mechanical properties (e.g. 14% in tensile strenght and 18% in Charpy impact toughness).
APA, Harvard, Vancouver, ISO, and other styles
5

Cioffi, Maria Odila Hilário. "Resina epóxi reforçada com tecido de carbono não dobrável por processo RTM /." Guaratinguetá : [s.n.], 2011. http://hdl.handle.net/11449/106718.

Full text
Abstract:
Banca: Herman Jacobus Cornelis Voorwald
Banca: Maysa Furlan
Banca: Sergio Frascino Muller de Almeida
Banca: Durval Rodrigues Junior
Banca: Paulo Roberto Mel
Resumo: Com o objetivo de ganhar competitividade no mercado internacional e contribuir para o desenvolvimento tecnológico no país, o presente trabalho apresenta a técnica de processamento de moldagem por transferência de resina (RTM), utilizada na fabricação de materiais compósitos estruturais e ainda pouco estudada no Brasil. Os compósitos processados por essa técnica apresentam maior fração volumétrica de fibras, melhor acabamento superficial e pouca ou nenhuma necessidade de acabamento do componente produzido. Este trabalho compreende a caracterização de compósitos produzidos com resina epóxi monocomponente RTM6 e o tecido não dobrável de fibra de carbono. Os compósitos produzidos pela Hexcel Composites foram analisados pela técnica de ultrassom C-Scan e os resultados mostraram que os laminados processados estão homogêneos quanto à impregnação. Ensaios mecânicos mostram que os laminados com tecido apresentam características comparáveis à dos compósitos produzidos em autoclave com maiores porcentagens de reforço. Em fadiga, os laminados apresentaram um alto e curto intervalo, com tensões próximas à de tração. Quanto ao comportamento térmico observou-se melhora nas propriedades com a adição do reforço de fibras de carbono, que promoveram o aumento da temperatura de transição vítrea (Tg). Quanto ao comportamento viscoelástico, foi observado a influencia da temperatura e freqüência no material. Considerando as propriedades mecânicas e térmicas, ambos os compósitos foram classificados como adequados à aplicação proposta.
Abstract: Aiming at gaining competitiveness on international market and contribute with technological development in the country, this work presents a processing technique of resin transfer molding (RTM), used to manufacture structural composites that Brazilian researches have yet few background. Composites processed by this method have a higher volume fraction of fibers, better surface finish, and requires little or none surface finish of the final component. This work includes the characterization of composites made with RTM6 monocomponent epoxy resin and carbon non-crimp fabric (NCF). Composites produced by Hexcel Composites were analyzed by C-scan ultrasound technique, which showed a homogeneous impregnation of the processed panels. Mechanical tests showed that RTM composites properties are comparable to those of autoclaving composites with higher fiber volume fraction. In fatigue, composites showed high and short interval, close to ultimate tensile strength (UTS), with an interval between 60-75% of UTS. Regarding the thermal behavior, it was observed an improvement in properties with the addition of carbon fiber reinforcement, which caused an increase in Tg. In regard to the viscoelastic behavior, it was observed the temperature and frequency influence on the material. Considering these mechanical and thermal properties, both composites are considered suitable for the application proposal.
APA, Harvard, Vancouver, ISO, and other styles
6

Jung, Yeonhee. "An efficient analysis of resin transfer molding process using extended finite element method." Phd thesis, Saint-Etienne, EMSE, 2013. http://tel.archives-ouvertes.fr/tel-00937556.

Full text
Abstract:
Numerical simulation for Resin Transfer Molding (RTM) manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions.Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with simple channel or radial flow models. Several application examples are analyzed to demonstrate ability of this method. A wind turbine blade is also treated as industrial application. Finally, a Graphic User Interface (GUI) tool is developed so as to make easy the pre/post-processing of the simulation.
APA, Harvard, Vancouver, ISO, and other styles
7

Miskbay, Onur Adem. "Process Characterization Of Composite Structures Manufactured Using Resin Impregnation Techniques." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610351/index.pdf.

Full text
Abstract:
The aim of this study is to investigate and compare the properties of two layer carbon epoxy composite plates manufactured using various resin impregnation techniques
Resin Transfer Molding (RTM), Light RTM (LRTM), Vacuum Assisted RTM (VARTM) and Vacuum Packaging (VP). Throughout the study a different packaging method was developed and named Modified Vacuum Packaging (BP). The mechanical properties of composite plates manufactured are examined by tensile tests, compressive tests, in-plane shear tests and their thermal properties are examined by Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) tests. All tests were performed according to suitable ASTM standards. The performance of specimens from each process was observed to vary according to the investigated property
however the VP process showed the highest performance for most properties. For most of the tests, VARTM, LRTM and RTM methods were following VP process in terms of performance, having close results with each other.
APA, Harvard, Vancouver, ISO, and other styles
8

Agogué, Romain. "Analyse expérimentale et numérique de la fabrication de pièces composites par le procédé RTM." Phd thesis, Université d'Orléans, 2011. http://tel.archives-ouvertes.fr/tel-00628046.

Full text
Abstract:
Cette thèse s'intéresse à la fabrication de pièces composites par le procédé Resin Transfert Molding (ou RTM), appliquée à des tubes de protection thermiques. Plus particulièrement, cette thèse vise à démontrer la faisabilité d'utiliser ce procédé pour la fabrication cette pièce complexe. La phase d'imprégnation de préformes sèches est plus particulièrement étudiée. Après mise en oeuvre, cette pièce peut présenter des défauts tels que de la porosité ou des déplacements de plis constituant la préforme. L'objectif de cette thèse est donc de comprendre l'origine de ces défauts et de minimiser voire de d'empêcher leur apparition. Pour cela, une démarche expérimentale a été mise en place. Celle ci comprend la réalisation d'un pilote de laboratoire permettant d'appliquer différentes conditions d'imprégnation aux préformes considérées. La perméabilité des renforts considérés a aussi été évaluée à différentes échelles grâce à l'utilisation de moyen dédiés à l'échelle macroscopique (banc de perméabilité planaire et transverse), et grâce à l'utilisation d'un code de calcul se basant sur des images de tomographie synchrotron à l'échelle microscopique. Enfin, une analyse de la qualité des prototypes réalisés a été menée en suivant des procédures mises en place lors de ce projet et les résultats analysés et mis en relation avec les conditions de mise en oeuvre. Cette approche expérimentale est couplée aux simulations numériques de la phase d'imprégnation que nous avons aussi mise en oeuvre au cours de cette thèse. Par l'utilisation combinée de la simulation numérique et des essais expérimentaux, nous avons défini des critères estimant le risque d'apparition des défauts. Ces critères ont montré leur efficacité sur les solutions innovantes que nous avons proposées puisque répondant aux exigences du cahier des charges industriel.
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen, Van-Hau. "Characterization and modeling of flax fiber reinforced composites manufacturing by resin transfer molding process." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10156.

Full text
Abstract:
Ce travail de thèse présente la caractérisation expérimentale de fibres de lins et une modélisation de l’écoulement de résine lors du procédé de Resin Transfer Molding (RTM) utilisant ces mêmes fibres. La variation du diamètre des filaments de lins immergés dans différents liquides tests est caractérisée par observation au microscope. Le taux et la vitesse d’absorption de liquides tests dans les fibres sont ensuite obtenus par centrifugation. Un nouveau modèle de perméabilité est ainsi développé afin de prendre en compte les effets du gonflement des fibres sur la perméabilité quelque soit le liquide test considéré. Le modèle est validé après comparaison avec les perméabilités expérimentales. Les propriétés de mouillage des fibres de lin en présence de différents liquides tests sont mesurées en utilisant un tube capillaire et une mèche de fibres de lin. Un modèle prenant en compte le gonflement des fibres ainsi que le phénomène d’absorption est proposé pour déterminer la tension de surface et l’angle de contact décrivant la mouillabilité. L’écoulement insaturé dans le tissu de fibres de lin est modélisé en utilisant l’équation de conservation de la masse, la loi de Darcy ainsi que les modèles de gonflement et d’absorption précédemment définis. Le flux massique absorbé dans les fibres et la modification du taux local de fraction volumique sont introduits par l’intermédiaire de termes puits dans l’équation de conservation de la masse. La variation de perméabilité spatiale et temporelle non uniforme peut ainsi être considérée dans le modèle complet proposé. Ce modèle est validé par comparaison avec un suivi expérimental de l’écoulement dans une préforme de fibres de lin
This thesis presents an experimental characterization of flax fiber and a modeling of the resin flow during the resin transfer molding process with flax preform. The change of diameter of flax fiber filament immersed in different test liquids was characterized using optical microscope. The sorption rate of the resin mass into the fiber filament immersed in the test liquids was also experimentally characterized using centrifuge test. A new permeability model was proposed to predict the permeability taking into account the fiber swell effect, regardless of test liquid and the model was validated by a comparison with the experimental measurement data. The wetting properties of flax fiber in contact with different test liquids were measured by capillary rise test using flax fiber yarn and a new model was established to obtain surface tension and contact angle by considering the fiber swell effect and the liquid sorption into the fiber filament. The unsaturated resin flow in the flax fiber preform was modeled by modifying the conventional mass conservation equation and Darcy’s law in order to take into account the effects of fiber swell and liquid sorption. The mass rate absorbed into the fiber and the change of fiber volume were considered as sink terms in the mass conservation equation. The permeability change due to the fiber swell was modeled in terms of time of fiber’s immersion in liquid. In particular, the sink term and permeability were considered as spatially and temporally non-uniform in the flow model. The proposed model was validated by a comparison with the experimental measurement of flow advancement in the flax fiber preform
APA, Harvard, Vancouver, ISO, and other styles
10

Häffelin, Daniel [Verfasser]. "Verfahren zur Integration von Folien in den RTM-Prozess (resin transfer molding) für endlosfaserverstärkte Schalenteile / Daniel Häffelin." München : Verlag Dr. Hut, 2017. http://d-nb.info/1137023708/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aaboud, Bouchra. "Modélisation et simulation de la formation, la compression et le transport des bulles d'air en milieux fibreux à double échelle de pores : application au procédé RTM." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0023/document.

Full text
Abstract:
Ce travail traite la problématique des bulles d’air contenues dans les pièces composites mises en œuvre par le procédé RTM. La modélisation des phénomènes de création, de compression et de transport de ce type de défauts est présentée. Notamment l’adoption d’un nouveau modèle de création des bulles d’air, de transport, et l’estimation des porosités à double échelle de pores ainsi que la saturation finale de la préforme sont données
This work covers the problematic of air bubbles entrapped during manufacturing composite parts via the RTM process. Modeling creation, compression, and transport of this type of defaults is presented here. Likewise, a new approach of air bubble’s creation, transport modeling, simulation of porosities at dual scale of pores, and estimation of the final saturation of the preform are given
APA, Harvard, Vancouver, ISO, and other styles
12

Lonné, Sébastien. "Modélisation de la propagation ultrasonore dans les matériaux composites obtenus par le procédé de fabrication RTM (Resin Transfer Molding)." Bordeaux 1, 2003. http://www.theses.fr/2003BOR12751.

Full text
Abstract:
Le procédé de fabrication des matériaux composites RTM (Resin Transfer Molding) est utilisé pour produire des pièces de géométrie complexe. Lors du contrôle ultrasonore de ces pièces, une mesure d'atténuation est effectuée pour caractériser le taux de porosité éventuel (défaut possible dans ces matériaux). Cependant, une grande variabilité d'atténuation est observée y compris pour des pièces saines de géométrie plane. L'objectif de notre travail est d'expliquer ce fait en développant un modèle de propagation et d'atténuation des ondes ultrasonores dans ces pièces dont la microstructure complexe présente un aspect multi-échelles. Un modèle original a été développé pour prédire l'atténuation à l'échelle élémentaire d'une couche unidirectionnelle de fibres de carbone dans une matrice d'époxy, couplant les phénomènes de diffusion multiple par les fibres et d'absorption par effet viscoélastique. Il a été validé expérimentalement et est applicable à tous les composites fibreux à deux phases, quelle qu'en soit la concentration de fibres. À l'échelle supérieure d'un pli constitué de plusieurs couches élémentaires de différentes orientations, une homogénéisation suffit à prédire le comportement anisotrope des ondes ultrasonores et leur atténuation. Une plaque réelle est constituée d'un ensemble de plis séparés de couches de résines pures, l'épaisseur des différents plis et couches étant fortement variable. Une étude statistique a été menée pour prédire l'influence de ces variations géométriques sur la transmission des ultrasons modélisée suivant un formalisme dérivé de la méthode de Thomson-Haskell. La variabilité d'atténuation ultrasonore observée en pratique est quantitativement reproduite et expliquée par l'irrégularité géométrique de la micro-structure
The Resin Transfer Molding process for manufacturing composite materials is used to produce parts of complex shape. During the ultrasonic examination of such parts, attenuation is measured to characterize possible porosity content (a potential defect in this material). However, strong variation of attenuation is observed including on sound plates. The present study aims at explaining this by developing a model for ultrasonic propagation and attenuation in such parts which complex micro-structure exhibits a multiple-scale aspect. An original model has been developed to predict attenuation at the elementary scale of an unidirectional layer of Carbon fibers in an epoxy matrix. It couples multiple-scattering by fibers and viscoelastic losses phenomena. It has been experimentally validated and applies to arbitrary two-phase fiber reinforced composites whatever the fiber volume fraction. At the upper scale of a ply made of several elementary layers of various orientations, the anisotropic behavior of ultrasonic waves and their attenuation are obtained by a homogenization procedure. An actual plate is made of several plies separated by pure resin layers. Plies and layers thicknesses are highly variable. A statistical study has been conducted to evaluate the influence of these geometrical variations on the ultrasonic transmission predicted by a model derived from Thomson-Haskell formalism. Ultrasonic attenuation variability practically observed is quantitatively reproduced and explained as resulting from the geometrical irregularity of the microstructure
APA, Harvard, Vancouver, ISO, and other styles
13

Lonné, Sébastien. "Modélisation de la propagation ultrasonore dans les matériaux composites obtenus par le procédé de fabrication RTM (resin transfer molding) /." [Gif-sur-Yvette] : [CEA Saclay, Direction des systèmes d'information], 2004. http://catalogue.bnf.fr/ark:/12148/cb39209790v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mouton, Serge. "Intégration des contraintes d’industrialisation des pièces en matériaux composites pour l’aide à la décision en conception préliminaire appliquée au procédé RTM." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14029/document.

Full text
Abstract:
L’intégration des contraintes d’industrialisation, des pièces en matériaux composites, en conception préliminaire, est un enjeu majeur de la compétitivité des entreprises, et s’inscrit dans une démarche de développement durable. Un travail de captation et de mise en forme de la connaissance industrielle a permis de développer une stratégie d’optimisation. Cette stratégie repose sur une approche multi-métiers, elle permet d’estimer la performance technique et économique d’une solution d’industrialisation. L’estimation de la performance est basée sur l’évaluation, pour chaque solution d’industrialisation, du risque de rupture du composant assemblé, du niveau d’intégration fonctionnelle et du coût de fabrication. La définition de la meilleure alternative est obtenue par la comparaison de la performance de solutions et s’appuie sur des méthodes et outils d’aide à la décision. Le risque de rupture est estimé à partir des écarts entre des caractéristiques de la pièce fabriquée par procédé Resin Transfer Molding (RTM) et les caractéristiques nominales. Les caractéristiques de la pièce fabriquée prises en compte sont : - les écarts géométriques, - les écarts de caractéristiques mécaniques. Dans l’industrie aéronautique, certaines pièces de structure en matériaux composites sont réalisées par le procédé RTM. Dans ce type de mise en forme, les caractéristiques mécaniques du composant sont directement liées au niveau d’imprégnation de la préforme. Dans le travail de thèse, les défauts d’imprégnation sont identifiés comme des écarts volumiques d’imprégnation. Ces écarts ont pour conséquence d’altérer les propriétés mécaniques du matériau qui constitue la pièce. L’estimation des écarts volumiques d’imprégnation est obtenue à partir de l’analyse des résultats de la simulation par éléments finis de l’écoulement de résine dans le renfort fibreux (logiciel Pam RTM®). La géométrie de la pièce obtenue par procédé RTM diffère de la géométrie nominale, cet écart est due en partie aux différences entre les caractéristiques physiques des constituants du matériau composite. Les variations géométriques de la pièce fabriquée sont identifiées comme des écarts géométriques de fabrication. Les écarts géométriques sont compensés, lors de la phase d’assemblage, par des déformations garantissant les contacts avec les pièces adjacentes. Ces déformations génèrent un état de contraintes mécaniques au sein de la pièce. La quantification de l’état de contraintes mécaniques est obtenue à partir d’une simulation thermomécanique par éléments finis réalisée par le logiciel Samcef®. L’aide à la décision est basée sur l’étude combinée de l’état de contraintes mécaniques due à la compensation des écarts géométriques et de l’incidence des écarts volumiques d’imprégnation sur les propriétés mécaniques de la pièce. Trois critères permettent d’estimer le risque de rupture du composant assemblé : un critère de rupture des matériaux composites quantifie le risque de rupture, les deux autres critères, prenant en compte les défauts d’imprégnation, majorent le risque de rupture. Afin de faciliter l’interprétation des résultats et la phase de comparaison de solutions, le risque de rupture est présenté sous forme d’une cartographie. En fonction des couplages des valeurs des critères, une optimisation de la conception et/ou de l’industrialisation est proposée. Une évaluation du niveau d’intégration fonctionnelle ainsi que du coût de fabrication complète la démarche d’aide à la décision
Integrating industrialization constraints of composite materials into preliminary design is a major challenge for companies in terms of competitiveness, and is part of a sustainable development approach. Work on capturing and formatting industry knowledge has helped develop a design optimization strategy. This strategy is based on multidisciplinary rules, and estimates the technical and economic performance of an industrialization solution. This estimate is based on the evaluation of failure risk of component assembly, level of functional integration and manufacturing cost. The definition of the best alternative is obtained by comparing solution performances, relying on decision support methods and tools. The failure risk is estimated from differences between the characteristics of the part manufactured by Resin Transfer Molding Process (RTM) and the nominal part (CAD). The following characteristics of the manufactured part are taken into account: ? - geometric deviations, ? - characteristic mechanical deviations. In the aviation industry, some structural composite parts are manufacture by RTM. In this type of manufacture, the mechanical properties of the component are directly related to the level of preform impregnation. In this thesis, the impregnation defects are identified as volumic impregnation deviations. These deviations have the effect of altering the mechanical properties of material. Estimated volume impregnation deviations are obtained by analysing the results of the finite element simulation of resin flow into the fibrous reinforcement (software Pam RTM ®). The part geometry obtained using the RTM process differs from the nominal geometry, with the deviation due partly to differences between the physical components of the composite material. The geometric variations in the manufactured part are identified as geometric manufacturing deviations. These geometric deviations are offset, in the assembly phase, by deformations due to contact with adjacent parts, which generate a state of mechanical stress within the part. The mechanical stress state is quantified from a finite element thermomechanical simulation carried out using the Samcef ® software. Decision support is based on the combined study of the state of mechanical stress due to the compensation of geometric deviations and the incidence of volume impregnation deviations on the mechanical properties of the part. Three criteria are used to estimate the failure risk of the assembled component: a composite materials failure criterion quantifies failure risk; the other two criteria, taking into account the impregnation defects, increase the failure risk. To facilitate interpretation of results and the solution comparison phase, the failure risk is represented by mapping. Depending on the coupling values of the criteria, optimizing the design and/or industrialization is proposed. An evaluation of the level of functional integration and manufacturing cost complete the decision support process
APA, Harvard, Vancouver, ISO, and other styles
15

Samet, Naïm. "Évaluation ultrasonore des propriétés d'une résine et détection de porosité à l'aide d'un transducteur multiéléments : application aux matériaux composites en cours de fabrication." Le Havre, 2012. https://theses.hal.science/tel-00786143/document.

Full text
Abstract:
Les études expérimentales menées au LOMC sur le procédé de fabrication des matériaux composites RTM (Resin Transfer Moulding), montrent l’apparition de bulles, à différentes échelles, au cours de la diffusion de la résine dans le réseau fibreux. Elles se déplacent pendant le processus, certaines se résorbent, d’autres persistent et diminuent ainsi la qualité globale du produit fini. Le sujet de cette thèse consiste à étudier l’apparition des bulles le long de fibres enfermées dans un canal de production. L’utilisation de mesures ultrasonores permet de suivre le front de liquide lors de son déplacement. Au moyen de ces mesures, l’apparition et l’évolution des bulles sont reliées aux processus qui les génèrent pour tenter de trouver des améliorations à la technique de mise en forme. Par traitement des signaux, des bulles sont détectées et leur évolution est suivie sur le trajet d'écoulement de la résine. Trois parties principales sont abordées au cours de cette thèse. Dans la première partie le comportement des ondes ultrasonores interagissant avec la résine en cours de polymérisation a été étudié. La deuxième partie consiste à étudier les conditions de détections de bulles en utilisant un transducteur multiéléments au sein de la résine. Dans la dernière partie, le suivi d’évolution des bulles dans le matériau composite en cours de fabrication a également été réalisé. Le but est de quantifier les concentrations de bulles relativement au taux de fibres et de résine. En perspective, des techniques d’imagerie ultrasonore utilisant l’effet Doppler ou encore des propriétés de l’acoustique non linéaire pourraient être envisagées. Le développement des techniques de contrôles d’END (Evaluation Non Destructive) lors de la réalisation de matériaux composites vise à permettre une meilleure compréhension des phénomènes et à compléter les bases de données utilisées lors des simulations numériques
The experimental studies conducted in the LOMC on the manufacturing of composite materials by use of the RTM (Resin Transfer Molding) process, show the appearance of bubbles at different scales, during the diffusion of the resin into the fiber matrix. They move during the process, a few are absorbed; others persist and alter the overall quality of the finished product. The subject of this thesis is to study the appearance of bubbles along fibers enclosed in a production channel. The liquid front is followed as it moves by ultrasound techniques. The appearance and the evolution of the bubbles are related, through these measures, to the processes that generate them in order to try and find improvements to the fabrication techniques. The bubbles are detected by signals processing and their evolution is followed in the flow path of the resin. Three main parts are discussed in this thesis: in the first part the behavior of ultrasonic waves interacting with the resin during polymerization is studied. The conditions for bubbles detection within the resin, by use of a phased array transducer, are discussed in the second part. The last part presents the monitoring of the evolution of the bubbles in the composite material during the manufacturing process was also performed. The aim is to quantify the concentration of bubbles relative to the rate amount of fiber and resin. In perspective, imaging techniques using the Doppler effect or nonlinear ultrasonic properties could be considered. The development of control techniques of NDT (Nondestructive Evaluation) during the production of composite materials is to should lead to a better understanding of the phenomena and to complete the feeding of the databases used in numerical simulations
APA, Harvard, Vancouver, ISO, and other styles
16

Waris, Marc. "Mise en œuvre, instrumentation, validation et modélisation d’un système d’injection RTM pour la fabrication de structures composites de hautes performances." Thesis, Saint-Etienne, EMSE, 2012. http://www.theses.fr/2012EMSE0661/document.

Full text
Abstract:
Les matériaux composites ont connu ces dernières années une forte croissance, croissance aujourd'hui renforcée par les nouvelles normes européenne visant à diminuer les émissions CO2 d'ici 2020. La réalisation de pièces complexes peut poser de nombreuses problématiques de fabrication comme la formation de zones sèches, ou la création de distorsions géométriques. Les origines de ces problématiques sont souvent liées à un manque de connaissance et de maîtrise des phases d'imprégnation des renforts et de cuisson du matériau. L'amélioration de la robustesse des procédés nécessite d'avoir une connaissance fine des phénomènes physiques qui ont lieu lors de l'élaboration. Dans cette perspective, les procédés d'élaboration de matériaux composites ont été étudiés à travers la mise en place d'un démonstrateur de laboratoire dans le cadre du projet LCM Smart. Ce pilote d'injection a permis de valider des solutions d'instrumentation, à partir de capteurs innovants (OFS) développés en partenariat avec le laboratoire d'optique Hubert Curien.L'application de cette instrumentation dans le cadre du suivi du procédé RTM a démontré les capacités des OFS pour le suivi des caractéristiques physiques de la pièce (le front d'écoulement, la température, les déformations résiduelles et le degré de cuisson). La comparaison des caractéristiques mesurées avec des simulations numériques effectuées en collaboration avec ESI, a montré une bonne corrélation.Enfin, l'instrumentation a permis de mettre en évidence l’intérêt d’un outillage composite en HexTool pour la réduction des contraintes résiduelles liées à l'interaction outil/pièce
A significant growth in production and consumption of composite materials can be seen recently; growth reinforced by the new European standards, aimed at reducing CO2 emissions by the year 2020.The producing of complex parts can cause many difficulties for manufacturing because of their geometries and / or their constituents (using of various materials). For example, dry zones or geometric distortion formation. The origins of these difficulties are often related to a lack of knowledge and control of the reinforcement's impregnation phases and material curing.Improving the robustness of the processes demands a detailed knowledge of physical phenomena that occur during the producing. For this, we studied the composite materials production through the implementation of a laboratory demonstrator in the project LCM Smart. This pilot injection was used to validate instrumentation solutions, from innovative sensors (OFS) developed in partnership with the optical laboratory Hubert Curien. The application of this instrumentation in the context of RTM process monitoring in the development of simple parts has demonstrated the capabilities of OFS to control physical characteristics of the part (the flow front, temperature, residual strain and curing degree). The comparison of the measured characteristics with numerical simulations carried out in collaboration with ESI showed a good correlation.Finally, instrumentation has demonstrated the capacity of composite tool made by HexTool to minimize the residual stresses due to the tool/part interaction
APA, Harvard, Vancouver, ISO, and other styles
17

Häffelin, Daniel [Verfasser], Klaus [Akademischer Betreuer] [Gutachter] Drechsler, and Volker [Gutachter] Altstädt. "Verfahren zur Integration von Folien in den RTM-Prozess (resin transfer molding) für endlosfaserverstärkte Schalenteile / Daniel Häffelin ; Gutachter: Klaus Drechsler, Volker Altstädt ; Betreuer: Klaus Drechsler." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1133261914/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Cazaux, Guillaume. "Faisabilité des procédés LCM pour l'élaboration de composites renfort continu à matrice thermoplastique polyamide." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0010/document.

Full text
Abstract:
ALes travaux présentés sont une contribution à l’élaboration de composites à matrices thermoplastiques (TP) par un procédé de type Liquid Composite Molding non réactif pour l’industrie automobile. La thèse a été effectuée dans le cadre du projet ANR TAPAS (ThermoplAstic Process for Automotive composite Structure) et s’est focalisée sur la mise en œuvre de plaques composites en renfort continu injectées avec des matrices polyamides 6,6 (PA 6,6) de hautes fluidités par Resin Transfer Molding. Le premier objectif est porté sur l’optimisation des cadences d’injection à travers l’étude de la perméabilité de préformes unidirectionnelles (UD) en fibres de verre et à hauts modules mécaniques. L’architecture de ces UD a ainsi été modifiée de manière à faciliter les écoulements. La perméabilité des différents tissus a pu être évaluée par un couplage entre des mesures expérimentales et une modélisation analytique basée sur un raisonnement à deux échelles de pores : l’écoulement intra et inter-torons. Le deuxième objectif sur lequel les travaux de thèse se sont concentrés s’est reposé sur la maitrise de l’état d’imprégnation par le bais d’une étude complète sur les phénomènes qui se déroulent à l’interface entre la fibre et la matrice à haute température. Plusieurs viscosités et formulations du PA 6,6 ainsi qu’un traitement appliqué sur le verre ont pu être caractérisés et discutés en termes de mouillabilité et d’adhésion. Enfin, la dernière partie du manuscrit présente les résultats obtenus sur les plaques mises en œuvre par RTM-TP en injection in-plane. Les conditions optimales de fonctionnement ainsi que les aspects de saturation, de santé matière et des propriétés mécaniques sont ensuite présentés et discutés
The present work is a contribution to the thermoplastic composites manufacturing by a non-reactive Liquid Composite Molding process for the automotive industry. The thesis was carried out by the « ANR TAPAS » project (Thermoplastic Process for Automotive Composite Structure) and was focused on the elaboration of continious-fiber reinforced composites plates injected with a high-fluidity polyamide 6,6 (PA 6,6) by the Resin Transfer Molding process. The first goal was focused on increasing injection rates through the study of the in-plane permeability of unidirectional (UD) glass fiber fabrics with high mechanical modulus (HM). Experiments and modelling results showed that the permeability of these UD has been enhanced by modifying specific structural parameters of their architecture. The analytical model developped and used is based on a flow distribution according two differents scales of porosity : in and inter-yarns. The second part of the work was focused on the understanding of phenomenas that take place at the interface created between glass fiber and the matrix during the impregnation step. The wettability and adhesion of molten PA 6,6 dropped on a glass substrate is studied at different processing temperature. The last part introduce the thermoplastic composite plates elaborated by RTM-TP process. The optimum operating conditions as well as preforms saturation and mechanical properties are also studied and discussed
APA, Harvard, Vancouver, ISO, and other styles
19

Lecointe, Damien. "Caractérisation et simulation des processus de transferts lors d'injection de résine pour le procédé RTM." Phd thesis, Université de Nantes, 1999. http://tel.archives-ouvertes.fr/tel-00528926.

Full text
Abstract:
Le procédé Resin Transfer Molding est une technologie de fabrication de pièces en matériaux composites. Une compréhension et une modélisation des phénomènes physiques qui interviennent dans certaines étapes de la fabrication apportent une contribution importante à la maîtrise de ce procédé. Les travaux abordés dans cette étude se situent dans le cadre d'un programme plus général visant le contrôle et le pilotage du RTM. Tout d'abord, une caractérisation de la perméabilité des renforts dans la direction perpendiculaire aux plis va compléter les résultats obtenus dans des études préalables sur les perméabilités planes. Ensuite, nous étudierons de près les transferts thermiques durant l'injection et la cuisson. Pour cela, plusieurs étapes sont nécessaires: caractérisation des propriétés thermiques (avec notamment le développement d'un montage destiné à mesurer les conductivités thermiques dans le plan des fibres), étude théorique et étude expérimentale à l'aide d'un moule instrumenté. Des simulations numériques permettront alors de valider les modèles développés. Ces travaux devront ensuite servir de base à l'amélioration du logiciel de simulation LCMFLOT. Enfin, une première étape vers l'optimisation du remplissage a été réalisée afin de pouvoir piloter les machines d'injection en imposant une vitesse d'imprégnation constante pendant le remplissage. Cette optimisation est basée sur l'exploitation des résultats de simulation.
APA, Harvard, Vancouver, ISO, and other styles
20

Waris, Marc. "Mise en œuvre, instrumentation, validation et modélisation d'un système d'injection RTM pour la fabrication de structures composites de hautes performances." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00849584.

Full text
Abstract:
Les matériaux composites ont connu ces dernières années une forte croissance, croissance aujourd'hui renforcée par les nouvelles normes européenne visant à diminuer les émissions CO2 d'ici 2020. La réalisation de pièces complexes peut poser de nombreuses problématiques de fabrication comme la formation de zones sèches, ou la création de distorsions géométriques. Les origines de ces problématiques sont souvent liées à un manque de connaissance et de maîtrise des phases d'imprégnation des renforts et de cuisson du matériau. L'amélioration de la robustesse des procédés nécessite d'avoir une connaissance fine des phénomènes physiques qui ont lieu lors de l'élaboration. Dans cette perspective, les procédés d'élaboration de matériaux composites ont été étudiés à travers la mise en place d'un démonstrateur de laboratoire dans le cadre du projet LCM Smart. Ce pilote d'injection a permis de valider des solutions d'instrumentation, à partir de capteurs innovants (OFS) développés en partenariat avec le laboratoire d'optique Hubert Curien.L'application de cette instrumentation dans le cadre du suivi du procédé RTM a démontré les capacités des OFS pour le suivi des caractéristiques physiques de la pièce (le front d'écoulement, la température, les déformations résiduelles et le degré de cuisson). La comparaison des caractéristiques mesurées avec des simulations numériques effectuées en collaboration avec ESI, a montré une bonne corrélation.Enfin, l'instrumentation a permis de mettre en évidence l'intérêt d'un outillage composite en HexTool pour la réduction des contraintes résiduelles liées à l'interaction outil/pièce.
APA, Harvard, Vancouver, ISO, and other styles
21

Wendling-Hivet, Audrey. "Simulation à l'échelle mésoscopique de la mise en forme de renforts de composites tissés." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0079.

Full text
Abstract:
De nos jours, l’intégration de pièces composites dans les produits intéresse de plus en plus les industriels, particulièrement dans le domaine des transports. En effet, ces matériaux présentent de nombreux avantages, notamment celui de permettre une diminution de la masse des pièces lorsqu’ils sont correctement exploités. Pour concevoir ces pièces, plusieurs procédés peuvent être utilisés, parmi lesquels le RTM (Resin Transfer Molding) qui consiste en la mise en forme d’un renfort sec (préformage) avant une étape d’injection de résine. Cette étude concerne la première étape du procédé RTM, celle de préformage. L’objectif est de mettre en œuvre une stratégie efficace conduisant à la simulation par éléments finis de la mise en forme des renforts à l’échelle mésoscopique. A cette échelle, le renfort fibreux est modélisé par un enchevêtrement de mèches supposées homogènes. Plusieurs étapes sont alors nécessaires et donc étudiées ici pour atteindre cet objectif. La première consiste à créer un modèle géométrique 3D le plus réaliste possible des cellules élémentaires des renforts considérés. Elle est réalisée grâce à la mise en œuvre d’une stratégie itérative basée sur deux propriétés. D’une part, la cohérence, qui permet d’assurer une bonne description du contact entre les mèches, c'est-à-dire, que le modèle ne contient ni vides ni interpénétrations au niveau de la zone de contact. D’autre part, la variation de la forme des sections de la mèche le long de sa trajectoire qui permet de coller au mieux à la géométrie évolutive des mèches dans le renfort. Grâce à ce modèle et à une définition libre par l’utilisateur de l’architecture tissée, un modèle représentatif de tout type de renfort (2D, interlock) peut être obtenu. La seconde étape consiste à créer un maillage hexaédrique 3D cohérant de ces cellules élémentaires. Basé sur la géométrie obtenue à la première étape. L’outil de maillage créé permet de mailler automatiquement tout type de mèche, quelle que soit sa trajectoire et la forme de ses sections. La troisième étape à franchir consiste, à partir du comportement mécanique du matériau constitutif des fibres et de la structure de la mèche, à mettre en place une loi de comportement du matériau homogène équivalent à un matériau fibreux. Basé sur les récents développements expérimentaux et numériques en matière de loi de comportement de structures fibreuses, un nouveau modèle de comportement est présenté et implémenté. Enfin, une étude des différents paramètres intervenant dans les calculs en dynamique explicite est réalisée. Ces deux derniers points permettent à la fois de faire converger rapidement les calculs et de se rapprocher de la réalité de la déformation des renforts. L’ensemble de la chaîne de modélisation/simulation des renforts fibreux à l’échelle mésoscopique ainsi créée est validée par comparaison d’essais numériques et expérimentaux de renforts sous sollicitations simples
Nowadays, manufacturers, especially in transport, are increasingly interested in integrating composite parts into their products. These materials have, indeed, many benefits, among which allowing parts mass reduction when properly operated. In order to manufacture these parts, several methods can be used, including the RTM (Resin Transfer Molding) process which consists in forming a dry reinforcement (preform) before a resin being injected. This study deals with the first stage of the RTM process, which is the preforming step. It aims to implement an efficient strategy leading to the finite element simulation of fibrous reinforcements at mesoscopic scale. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous and continuous. Several steps are then necessary and therefore considered here to achieve this goal. The first consists in creating a 3D geometrical model of unit cells as realistic as possible. It is achieved through the implementation of an iterative strategy based on two main properties. On the one hand, consistency, which ensures a good description of the contact between the yarns, that is to say, the model does not contain spurious spaces or interpenetrations at the contact area. On the other hand, the variation of the yarn section shape along its trajectory that enables to stick as much as possible to the evolutive shape of the yarn inside the reinforcement. Using this tool and a woven architecture freely implementable by the user, a model representative of any type of reinforcement (2D, interlock) can be obtained. The second step consists in creating a 3D consistent hexahedral mesh of these unit cells. Based on the geometrical model obtained in the first step, the meshing tool enables to mesh any type of yarn, whatever its trajectory or section shape. The third step consists in establishing a constitutive equation of the homogeneous material equivalent to a fibrous material from the mechanical behavior of the constituent material of fibers and the structure of the yarn. Based on recent experimental and numerical developments in the mechanical behavior of fibrous structures, a new constitutive law is presented and implemented. Finally, a study of the different parameters involved in the dynamic/explicit scheme is performed. These last two points allow both to a quick convergence of the calculations and approach the reality of the deformation of reinforcements. The entire chain modeling/simulation of fibrous reinforcements at mesoscopic scale created is validated by numerical and experimental comparison tests of reinforcements under simple loadings
APA, Harvard, Vancouver, ISO, and other styles
22

Zemni, Lilia. "Étude de la mise en oeuvre de composites thermostables cyanate-ester pour pièces structurales aéronautiques tièdes." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2019. http://www.theses.fr/2019EMAC0004/document.

Full text
Abstract:
Les pièces situées dans des zones chaudes/tièdes (300-400°C) de l'avion sont actuellement en titane (mât moteur) ou en composite à matrice époxy (plenum). Comment pourrait-on diminuer la masse de ces pièces tout en évitant leur dégradation à hautes températures de fonctionnement ? Le projet TACT (Technologie pour Aérostructures composites Tièdes), porté par Nimitech Innovation® (Groupe LAUAK), propose une solution innovante consistant à mettre en oeuvre par voie RTM des pièces structurales tièdes à base de renfort en fibres de carbone (FC) et de matrice Cyanate ester (CE). Le choix de la matrice thermodurcissable CE est justifié par son caractère thermostable, c'est-à-dire sa capacité d'opérer en continu à de hautes températures de fonctionnement (avec une température de transition vitreuse Tg>300°C). Par ailleurs, elle possède la facilité de mise en oeuvre des époxydes du fait qu'elle s'adapte généralement bien aux paramètres du procédé RTM. Toutefois, l'exothermie élevée de la matrice CE lors de la réticulation implique un gradient de température dans la pièce composite et peut ainsi engendrer des problèmes de surchauffe. Les travaux scientifiques menés dans le cadre de cette thèse se focalisent sur la problématique de surchauffe de la résine pendant le processus de polymérisation très exothermique dans le moule RTM. L'objectif serait ainsi de maîtriser le cycle de cuisson du composite afin d'éviter tout problème d'emballement ou de dégradation pendant la réticulation de la matrice. Dès lors, la thèse s'organise de la manière suivante : dans un premier temps, le comportement thermocinétique de la matrice CE (pure et catalysée) est analysé pendant l'étape de réticulation, et ceci dans l'optique de contribuer à l'optimisation de cycle de cuisson lors de la mise en oeuvre du composite FC/CE par procédé RTM. Ensuite, les propriétés thermiques (capacité calorifique, conductivité, diffusivité) en fonction du degré d'avancement de la résine CE sont menés afin d'évaluer le gradient thermique régi par l'équation de la chaleur permettant de maîtriser la cuisson de la résine dans l'épaisseur. Par ailleurs, la vitrification de la matrice CE est étudiée par le suivi de la température de transition vitreuse Tg en fonction de la température et du taux d'avancement à l'aide de différents techniques de mesure (DSC, DMA, TMA). Enfin, une modélisation de la vitrification à l'aide du modèle Di-Benedetto permettra l'estimation de la température de la transition vitreuse Tg ∞ pour le réseau tridimentionnel entièrement réticulé
Aeronautical parts which operate in high temperature area (300-400°C) are currently made of titanium (aircraft pylon) or composite materials based on epoxy matrix (plenum). In which extent the weight of these pieces could be reduced as well as avoiding their degradation when operating at these working temperature ranges? TACT project (Technologie pour Aérostructures composites Tièdes), overseen by Nimitech Innovation® (Groupe LAUAK), suggests an innovative solution based on the development of high performance composites parts reinforced by carbon fibers (CF) and cyanate ester matrix (CE) through RTM process. The CE resin belongs to the class of high-performance thermosetting polymers and is mainly chosen in this project due to its thermal stability when operating at high temperatures (with a glass transition Tg>300°C), as well as epoxy-like processability. However, the cross-linking reaction exhibits highly exothermic process, resulting in non-linear increase in internal temperature, which may cause a temperature overshoot. The scientific work carried out within this thesis focuses on the problem of overheating of the resin during the highly exothermic polymerization process in the RTM mold. The objective would thus be to control the curing cycle of the composite in order to avoid problems of runaway or degradation during the crosslinking of the matrix. Hence, the thesis is organized as follows: firstly, thermokinetic behavior of CE resin is analyzed during the crosslinking process in order to optimize the curing cycle. Secondly, thermal properties (heat capacity, conductivity, diffusivity) are identified as a function of the conversion degree in order to evaluate the thermal gradient covered by the heat equation making it possible to control the curing along the thickness of the composite. Moreover, the vitrification of the cyanate ester matrix is studied by monitoring the glass transition temperature Tg as a function of the temperature and conversion degree using different methods (DSC, DMA, TMA). Finally, Di-Benedetto model, a vitrification model, is chosen in order to identify the glass transition temperature Tg∞ of a full crosslinked resin
APA, Harvard, Vancouver, ISO, and other styles
23

Ghodhbani, Nacef. "Contrôle et suivi des propriétés visco-élastiques d'un composite en cours de fabrication." Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0008/document.

Full text
Abstract:
Les transducteurs ultrasonores font l'objet de nombreux développements en contrôle non-destructif (CND) industriel. Utilisé ponctuellement et périodiquement, le CND ultrasonore permet d'établir des diagnostics sur la santé des matériaux. La caractérisation ultrasonore en temps réel constitue un outil de surveillance de l'évolution des propriétés physiques lors de la fabrication des matériaux composites. Dans ce contexte, des études sont menées au LOMC pour optimiser le procédé de fabrication des matériaux composites par RTM (Resin Transfer Molding) afin d’améliorer la qualité du produit. Ce travail de thèse consiste à développer des méthodes ultrasonores pour le suivi des propriétés viscoélastiques d’un composite pendant la phase de production. Les propriétés viscoélastiques sont étudiées à l’aide de modèles théoriques, de simulations numériques et de résultats expérimentaux. Des études de calibration ont été menées afin d’étudier les facteurs d’influence sur le suivi de propriétés ultrasonores lors de la mise en oeuvre d’un procédé RTM. Le suivi des paramètres viscoélastiques de résines époxy est effectué dans un premier temps à basse température au cours d'une polymérisation isotherme et d’une post-cuisson. Ensuite, une approche basée sur la méthode de caractérisation en émission/transmission a été développée afin d’étudier le comportement à haute température. La modélisation de la réponse électroacoustique par série de Debye (DSM) a été effectuée en se basant sur des approches analytiques. L’utilisation des transducteurs multiéléments permet la localisation et le dimensionnement de défauts lors du déplacement de fibres de carbone dans une résine liquide, entre des moules
The developments based on ultrasonic transducers are nowadays numerous in the industrial non-destructive testing (NDT). Used punctually and periodically, the ultrasonic NDT is used for health diagnostics of materials. Ultrasonic characterization in real time allows a physical properties monitoring during the manufacturing of composite materials. In this context, studies are conducted in LOMC in view to optimize the manufacturing process of composite materials using RTM (Resin Transfer Molding) in order to improve the product quality. This work consists to develop ultrasonic methods for the monitoring of viscoelastic properties during the production phase of composites. The viscoelastic properties are studied using theoretical models, numerical simulations and experimental measurements. Calibration studies were carried out to study the influencing factors on the monitoring of ultrasonic properties during the RTM process. The monitoring of viscoelastic parameters of epoxy resins is performed in a first time at low temperature during an isothermal polymerization and a post-curing. Then, an approach based on the transmission mode characterization was developed to study high-temperature behavior. Based on analytical approaches, the electroacoustic response was simulated by Debye series method (DSM). The use of phased array transducers was investigated for the location and sizing of defects during the movement of the carbon fiber in a liquid resin between the molds
APA, Harvard, Vancouver, ISO, and other styles
24

Van, den Broek d'Obrenan Ghislain. "Adaptation du procédé RTM (Moulage par Transfert de Résine) à la mise en œuvre de matériaux composites à matrice thermoplastique." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0112/document.

Full text
Abstract:
Le procédé « Resin Transfer Molding » (RTM) est très largement utilisé pour la production industrielle de matériaux composites à matrice thermodurcissable. En effet, de nombreux domaines tels que l’automobile et l’aéronautique l’emploi couramment. Dans ce travail nous avons adapté ce procédé à la mise en œuvre de matériaux composites à matrice thermoplastique afin de répondre aux critères écologiques et économiques imposés aux industries. Pour cela plusieurs étapes ont été nécessaires. La première fut la sélection d’une chimie robuste, adaptée aux exigences du procédé (faible viscosité initiale du système réactif, temps de polymérisation court, etc). La chimie choisie fut la polymérisation anionique par ouverture de cycle de l’ε-caprolactame dans le but d’obtenir du polyamide-6 (PA-6). Une étude rhéo-cinétique ainsi que les caractérisations physico-chimiques d’un PA-6 obtenu au laboratoire furent réalisé. A la suite de cette étape, des essais en conditions de procédé ont été effectué avec l’utilisation d’un équipement pilote dédié. Ces essais furent la source de modifications et d’optimisations de certains paramètres du procédé. La troisième étape, a consisté à la production de pièces composites avec un renfort de type : tissu unidirectionnel de verre. Cette production fut suivie de tests mécaniques et physico-chimiques afin d’évaluer les propriétés de ces pièces. Différents ensimages de tissu ont été étudiés avec, pour objectif, la détermination de celui offrant les meilleures propriétés. Durant cette étude nous avons observé que la nature de l’ensimage impactait peu la chimie. Pour finir, nous avons mis en place un ensimage réactif qui permettra une meilleure interaction fibre/matrice
The "Resin Transfer Molding" (RTM) process is very largely used for the industrial production of composites materials with thermoset matrix. Indeed, it’s used by many fields such as the automotive and aeronautics. In this work we adapted this process to the manufacture of composite materials with thermoplastic matrix in order to answer the ecological and economic criteria imposed on industries. For that several steps were necessary. The first was the selection of a robust chemistry, adapted to the requirements of the process (low initial viscosity of the reactive system, polymerization time, etc). The selected chemistry, was the ring opening polymerization of ε - caprolactam to obtain polyamide-6 (PA-6). Rhéo-kinetics studies, as well as the physicochemical characterizations of a Pa-6 obtained at the laboratory were carried out. Following this step, tests in conditions of process were carried out with the use of dedicated pilot equipment. These tests were the source of modifications and optimizations of certain parameters of the process. The third step, consisted with the production of composite parts with a reinforcement of the type: unidirectional glass fabric. This production was followed mechanical and physico-chemical tests in order to evaluate the properties of these parts. Various sizing of the glass fabric were studied with, for objective, to determine which to offer the best properties. During this study we observed the low impact of the sizing on the chemistry of PA-6. To finish, we set up a reactive sizing which will allow a better interaction fibre/matrix
APA, Harvard, Vancouver, ISO, and other styles
25

Wendling, Audrey. "Simulation à l'échelle mésoscopique de la mise en forme de renforts de composites tissés." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961196.

Full text
Abstract:
De nos jours, l'intégration de pièces composites dans les produits intéresse de plus en plus les industriels, particulièrement dans le domaine des transports. En effet, ces matériaux présentent de nombreux avantages, notamment celui de permettre une diminution de la masse des pièces lorsqu'ils sont correctement exploités. Pour concevoir ces pièces, plusieurs procédés peuvent être utilisés, parmi lesquels le RTM (Resin Transfer Molding) qui consiste en la mise en forme d'un renfort sec (préformage) avant une étape d'injection de résine. Cette étude concerne la première étape du procédé RTM, celle de préformage. L'objectif est de mettre en œuvre une stratégie efficace conduisant à la simulation par éléments finis de la mise en forme des renforts à l'échelle mésoscopique. A cette échelle, le renfort fibreux est modélisé par un enchevêtrement de mèches supposées homogènes. Plusieurs étapes sont alors nécessaires et donc étudiées ici pour atteindre cet objectif. La première consiste à créer un modèle géométrique 3D le plus réaliste possible des cellules élémentaires des renforts considérés. Elle est réalisée grâce à la mise en œuvre d'une stratégie itérative basée sur deux propriétés. D'une part, la cohérence, qui permet d'assurer une bonne description du contact entre les mèches, c'est-à-dire, que le modèle ne contient ni vides ni interpénétrations au niveau de la zone de contact. D'autre part, la variation de la forme des sections de la mèche le long de sa trajectoire qui permet de coller au mieux à la géométrie évolutive des mèches dans le renfort. Grâce à ce modèle et à une définition libre par l'utilisateur de l'architecture tissée, un modèle représentatif de tout type de renfort (2D, interlock) peut être obtenu. La seconde étape consiste à créer un maillage hexaédrique 3D cohérant de ces cellules élémentaires. Basé sur la géométrie obtenue à la première étape. L'outil de maillage créé permet de mailler automatiquement tout type de mèche, quelle que soit sa trajectoire et la forme de ses sections. La troisième étape à franchir consiste, à partir du comportement mécanique du matériau constitutif des fibres et de la structure de la mèche, à mettre en place une loi de comportement du matériau homogène équivalent à un matériau fibreux. Basé sur les récents développements expérimentaux et numériques en matière de loi de comportement de structures fibreuses, un nouveau modèle de comportement est présenté et implémenté. Enfin, une étude des différents paramètres intervenant dans les calculs en dynamique explicite est réalisée. Ces deux derniers points permettent à la fois de faire converger rapidement les calculs et de se rapprocher de la réalité de la déformation des renforts. L'ensemble de la chaîne de modélisation/simulation des renforts fibreux à l'échelle mésoscopique ainsi créée est validée par comparaison d'essais numériques et expérimentaux de renforts sous sollicitations simples.
APA, Harvard, Vancouver, ISO, and other styles
26

Fontanier, Jean-Charles. "Développement d'un système réactif pour composites acryliques par procédé RTM." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI024.

Full text
Abstract:
Le contexte environnemental actuel conduit les constructeurs automobiles à diminuer les émissions globales de CO2. Afin de répondre à cet objectif, plusieurs voies sont accessibles mais l’allègement de la structure du véhicule apparaît comme la solution la plus prometteuse grâce à la substitution des pièces métalliques par des matériaux composites et plus particulièrement des composites thermoplastiques à matrices acryliques. Cette étude s’est donc intéressée à développer et caractériser plusieurs formulations à base acrylique afin d’identifier les différents leviers (choix du monomère / condition de polymérisation) permettant d’atteindre une polymérisation rapide (< 3 à 5 min) adaptée aux hautes cadences de l’industrie automobile. Le moulage par transfert de résine (RTM) ayant été choisi comme procédé de mise en œuvre, une seconde étape de travail a été de caractériser l’évolution de la viscosité au cours de la polymérisation. En disposant des mesures cinétiques et rhéologiques, il a aussi été possible, par modèle inverse, de proposer un suivi in-situ de la polymérisation via la corrélation des données par des mesures diélectrométriques. Puis, dans une optique d’amélioration de la tenue chimique du PMMA, la synthèse d’un polymère réversible présentant alternativement une structure tridimensionnelle et une structure linéaire a été réalisée. Ainsi, grâce à la préparation d’un comonomère présentant des fonctions Diels-Alder, il a été possible d’obtenir un polymère ayant la capacité d’emprunter les propriétés de résistance chimique des réseaux thermodurcissables tout en conservant l’aptitude à la transformation des thermoplastiques. Enfin, une dernière étude s’est portée sur le renforcement du PMMA par mélange avec différents polymères. Ainsi, grâce à un choix judicieux de polymères présentant des caractéristiques physico-chimiques intéressantes, il a été possible d’améliorer significativement la tenue en température mais également la résistance au choc de la matrice acrylique développée
Nowadays, polymer matrix composites are widely used for aerospace, automotive, railway and sport industries. For similar structural properties, these materials coul be very attractive since they could be 30 to 40% lighter than metallic counterparts. In the current context of environmental development issues, thermoplastic-based composites, (in our case acrylic matrix based one), can be considered as they can be easily recycled as opposed to thermoset-based ones. Furthermore, they could exhibit good mechanical properties, i.e. stiffness and impact resistance, enabling them to be relevant for many applications. Manufacturing structural composites requires to produce parts without defects having complex geometries. For this purpose Resin Transfer Molding (RTM) has been selected to process such composites. Indeed, it corresponds to a low temperature closed-mold process allowing for manufacturing complex continuous fiber-based-reinforced parts. However, it requires precursors with a very low viscosity (η < 1 Pa.s) to ensure a good impregnation of the dry preform. To be cost effective, fast reactive systems have also to be selected. Thermoplastic polymers which own a very high viscosity in molten state cannot be directly used. Our strategy is to design an acrylic-based reactive formulation exhibiting a very low initial viscosity, i.e. about 100 mPa.s and which can subsequently polymerizes via a free radical mechanism once the mold is filled and the preform fully impregnated. Therefore, our main objective is to optimize curing conditions (especially thermal initiator ratios and temperature) of RTM-compatible acrylic-based reactive formulations to lead to suitable composite parts with high conversion rate, low residual monomer content and relevant process cycles
APA, Harvard, Vancouver, ISO, and other styles
27

Cordier, Telmar Aurélie. "Etude de déformabilité de tresses en cours de préformage pour la fabrication de composite par le procédé RTM." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2045/document.

Full text
Abstract:
Cette thèse traite la fabrication de pièces composites par le procédé « Resin Transert Molding » (RTM), appliquée à des tubes de protections thermiques assemblées dans des propulseurs de systèmes d’armes. Ces travaux ont pour objectif de démontrer la faisabilité d’utilisation de ce procédé pour la fabrication de ces pièces complexes. C’est le préformage, première étape du procédé de fabrication par RTM, qui est étudié dans le cadre de cette thèse. Cette étape est cruciale du point de vue de la faisabilité de l’étape d’injection qui la suit dans le procédé RTM mais aussi pour s’assurer de la qualité de la pièce composite finale obtenue. L’objectif des travaux de thèse est triple. Il faut tout d’abord développer le protocole de fabrication répétable adapté pour garantir l’obtention de préformes conformes. Ce protocole devra être viable du point de vue industriel. Pour cela, une démarche expérimentale a été mise en place. Un pilote de laboratoire puis un pilote industriel ont permis de comprendre et maitriser les phénomènes survenant en cours de préformage en faisant varier les paramètres procédé pour la fabrication de nombreux prototypes. Un modèle macroscopique prédictif de la forme globale des plis obtenus à partir des paramètres procédés a été développé à l’aide des observations expérimentales. Un modèle mésoscopique, à l’échelle de la maille élémentaire, a été écrit également. Il permet de prédire, à partir des données constitutives du matériau et d’une géométrie de pièce, la déformation de compaction et de cisaillement, modes de sollicitations prépondérants en cours de préformage, subie par le renfort en cours de la première étape du procédé de fabrication. Ces modèles mésoscopique et macroscopique couplés permettent le développement d’un outil global qui, de manière théorique et prédictive, assure la faisabilité d’une pièce de géométrie connue avec un matériau connu et fournit les paramètres « procédé » optimum pour assurer sa fabrication future. Les phénomènes de déformation en cisaillement et compaction apparaissant sur la tresse en cours de préformage sont donc identifiés et connus. Le procédé de fabrication est optimisé et l’outil prédictif permet d’envisager et tester en amont un changement de matériau, de géométrie de pièce à fabriquer ou de cahier descharges industriel
This study deals with the manufacture of composite parts by the process "Resin Transert Molding" (RTM), applied to thermal protection tubes. This work aims to demonstrate the feasibility of using this method for the production of these complex parts. This study deals with the first step of the RTM process, the fiber performing. This is critical from the standpoint of the feasibility of injecting step that follows in the RTM process but also to ensure the quality of the final composite part obtained. The aim of the thesis is threefold. Must first develop the manufacturing protocol adapted to ensure repeatable obtaining preforms compliant. This protocol should be viable to the industrial point of view. For this purpose, an experimental approach was implemented. A pilot laboratory and an industrial pilot helped to understand and master the phenomena occurring during forming varying the process parameters for the production of many prototypes. A macroscopic model predictive of overall shape folds obtained from the process parameters has been developed with the experimental observations. A mesoscopic model, the scale of the unit cell was also writing. It can predict, based on the specifications of the material and part geometry, the deformation of compaction and shear stresses. These models mesoscopic and macroscopic allow the development of a global tool that, theoretically predictive and ensures the feasibility of a piece of known geometry with a known material parameters and provides the "process" to ensure its optimum manufacturing future. The phenomena of compaction and shear strain appearing on the braid during preforming are identified and known. The manufacturing process is optimized and the predictive tool allows to explore and test upstream change of material, part geometry in manufacturing or industrial specifications
APA, Harvard, Vancouver, ISO, and other styles
28

Celle, Pierre. "Couplages fluide / milieu poreux en grandes déformations pour la modélisation des procédés d'élaboration par infusion." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006. http://tel.archives-ouvertes.fr/tel-00741260.

Full text
Abstract:
Dans ce manuscrit, un modèle complet pour la simulation de l'écoulement d'un fluide thermor éactif à travers un milieu poreux fortement compressible est présenté. Ce modèle est utilisé pour l'étude des procédés d'élaboration des matériaux composites par infusion à travers leur épaisseur (Liquid Resin Infusion-LRI et Resin Film Infusion-RFI ). Dans ces procédés, le mélange entre les renforts et la résine liquide est réalisé dans la direction transverse aux plans des préformes pendant la phase de mise en forme. Les coˆuts sont ainsi réduits et les problèmes de remplissage éliminés. Ces procédés sont néanmoins peu maîtrisés et les caractéristiques de la pièce finale difficilement prévisibles (principalement les épaisseurs et les porosités). La mise au point d'un modèle numérique constituerait un bon outil pour développer et finaliser de nouvelles solutions composites. D'un point de vue physique, l'infusion de la résine à travers l'épaisseur des préformes est une conséquence de la pression appliquée sur l'empilement résine/préforme. Dans cette analyse multi-physique deux types de problèmes sont rencontrés. Tout d'abord, on connait mal les conditions de couplage entre les zones liquides, gouvernées par les équations de Stokes, et les préformes imprégnées assimilées à des milieux poreux, gouvernées par une loi de Darcy et une loi de comportement mécanique non-linéaire. Par ailleurs, les interactions entre l'écoulement de la résine et la compression des préformes ne sont pas bien maîtrisées. Le modèle développé inclut donc une condition de Beaver-Joseph- Schaffman modifiée pour le couplage entre les zones de Darcy et de Stokes. Une formulation ALE pour l'écoulement de la résine dans un milieu poreux déformable subissant de fortes déformations est utilisée et couplée à une formulation Lagrangienne Réactualisée pour la partie solide. Ces deux mécanismes physiques sont couplés à des modèles thermo-chimiques pour traiter la réticulation de la résine sous l'action du cycle de température. Dans ce travail, un certain nombre d'outils numériques et de nouvelles formulations ont été développés en vue de simuler les procédés LRI et RFI. Chaque outil est étudié et validé analytiquement ou numériquement avant d'être intégré dans les modèles LRI /RFI. Des simulations numériques d'infusion sont ensuite présentées et commentées, puis une première comparaison avec des essais expérimentaux est proposée.
APA, Harvard, Vancouver, ISO, and other styles
29

Mtibaa, Mohamed. "Οptimisatiοn de cοuplage Ρrοcédé/Ρrοpriétés/Fiabilité des Structures en Μatériaux Cοmpοsites Fοnctiοnnels." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH03.

Full text
Abstract:
Ce travail de recherche se penche sur les défis et les interactions entre les procédés de fabrication RTM et CRTM, les propriétés mécaniques et la fiabilité des structures en matériaux composites fonctionnels. Des modèles numériques ont été développés pour simuler l’imprégnation de la suspension à travers le milieu fibreux dans ces deux procédés. Ces modèles ont été validés en comparant leurs résultats à des résultats expérimentaux, semi-analytiques et analytiques présentes dans la littérature. Une étude paramétrique a été menée pour démontrer l’impact des différents paramètres de procédé sur la distribution des particules dans le composite final. De plus, une comparaison entre les modes d’injection et de compression a été effectuée. Les résultats de cette partie ont montré que la distribution des particules dans la pièce finale dépend de la concentration initiale, de la distance parcourue et de la fraction volumique initiale des fibres, indépendamment des valeurs des paramètres d'injection et de compression. Il a également été observé que le procédé CRTM à pression d’injection imposée et à force de compression imposée représente le scénario le plus favorable pour produire des pièces composites. Afin de contrôler la distribution finale des particules dans le composite élaboré par le procédé RTM, deux étapes clés ont été identifiées et conduites. La première étape consiste en une analyse de sensibilité axée sur trois paramètres : l’évolution temporelle de la concentration initiale des particules, du champ de pression d’injection, et de la porosité initiale des fibres. Les conclusions indiquent un impact mineur de la porosité initiale et du champ de pression d’injection, tandis que l’évolution de la concentration initiale des particules injectées joue un rôle prépondérant. Dans une seconde étape, un algorithme d’optimisation a été intégré au modèle numérique du procédé RTM, visant à déterminer la configuration optimale de l’évolution de la concentration initiale des particules injectées afin de rapprocher la distribution des particules dans le composite final aux profils souhaités. Les résultats obtenus grâce à l’algorithme génétique ont démontré une maîtrise satisfaisante de cette répartition. Pour enrichir cette partie, un modèle évaluant le comportement mécanique de la pièce fabriquée a été développé. Les résultats indiquent une corrélation positive entre le taux de particules et certaines propriétés mécaniques telles que les modules d’élasticité E11 et E22, ainsi que les modules de cisaillement G12 et G23. Cependant, le coefficient de Poisson (Nu12) est inversement proportionnel au taux de particules. En outre, le module de cisaillement G12 était le plus influencé par le taux de particules.Dans cette partie, nous avons visé le contrôle des propriétés mécaniques des pièces composites fabriquées par le procédé CRTM, ensuite comparées aux résultats du procédé RTM. Les conclusions révèlent que le procédé RTM offre un meilleur contrôle de ces propriétés, tandis que le procédé CRTM améliore considérablement les propriétés mécaniques des pièces grâce à sa phase de compression, qui augmente la fraction volumique des fibres et donc améliorant ces propriétés.Par la suite, une analyse statique a été réalisée en développant un modèle numérique basé sur la méthode des éléments finis avec Ansys APDL. Cette analyse vise la détermination de la déformation maximale de la pièce en fonction de la configuration (encastrement, simplement appuyé) et de la charge répartie appliquée. Ce modèle est combiné avec ceux du procédé CRTM et du calcul des propriétés mécaniques. Dans le but d’ajuster les propriétés mécaniques de la pièce composite selon la configuration et la charge répartie, tout en minimisant son poids et en respectant des contraintes mécaniques prédéterminées, telles que la limite de déformation maximale, un algorithme d’optimisation a été intégré à notre modèle global. Les résultats obtenus répondent parfaitement à ces objectifs
This research focuses on the challenges and interactions between the manufacturing processes (Resin Transfer Molding ‘RTM’ and Compression Resin Transfer Molding ‘CRTM’), the mechanical properties, and the reliability of composite material structures; more specifically the functional composites. A number of numerical models have been developed for simulating the suspension (resin + particles) impregnation through the fibrous medium (fibers) in the RTM and CRTM processes. These models are validated by comparing their results with experimental, semi-analytical, and analytical ones from the literature. A parametric study is carried out to demonstrate the impact of various process parameters on particles’ distribution in the final composite. Moreover, a comparison between the injection and compression modes is done. The results of this part show that the distribution of particles in the final part depends on the initial concentration, the distance travelled, and the initial fibers’ volume fraction. However, it is independent of the parameters values of injection and compression. It is also observed that the CRTM process with imposed pressure injection and imposed force compression represents the most favorable scenario for producing composite parts.For the purpose of controlling the final particles’ distribution in the composite material, manufactured by the RTM process, two key steps have been identified. The first step consists in a sensitivity analysis that examines three parameters: the temporal evolution of the initial injected particles’ concentration, the injection pressure field and the initial fibers’ porosity. The conclusions indicate a minimal impact of the initial porosity and the injection pressure field; while the evolution of the initial concentration of the injected particles has a dominant effect. In a second step, an optimization algorithm is implemented in the numerical model of the RTM process. It is used to determine the optimal configuration of the initial injected particles’ concentration’s evolution; in order to approximate the particles’ distribution in the final composite to the desired profiles. The obtained results from the genetic algorithm provide a very satisfactory control of this distribution. To complete this section, a model, estimating the mechanical properties of the manufactured part, is developed. It is found that there is a positive correlation between the particles’ fraction and certain mechanical properties, namely the elastic modulus E11 and E22, and the shear modulus G12 and G23. Nevertheless, the Poisson’s ratio (Nu12) is inversely proportional to the particles’ fraction. Also, the shear module G12 is the most significantly influenced by this fraction.Following this, the control of the mechanical properties of the composite parts, manufactured by the CRTM process, is targeted, and compared to the results of the RTM process. The conclusions reveal that the RTM process offers a better control of these properties. Whereas, the CRTM process improves considerably the mechanical properties of the parts due to its compression phase, which increases the fibers’ volume fraction and consequently enhances these properties.Finally, a static analysis is conducted based on the developed numerical model that uses the finite element method (Ansys APDL). This model is combined with those of the CRTM process and the mechanical properties calculation. An optimization algorithm is integrated in our global model to adapt the mechanical properties of the composite part according to the configuration (cantilever or simply supported) and the load distribution. Moreover, it minimizes the composite part’s weight and ensures the respect of the predetermined mechanical constraints such as the maximum deformation limit. The obtained results correspond perfectly to these objectives
APA, Harvard, Vancouver, ISO, and other styles
30

Arbter, Rene. "Contribution to robust resin transfer molding /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rudd, Christopher. "Preform processing for high volume resin transfer moulding (RTM)." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Perry, Mark Joseph. "Analysis of resin transfer molding: Material characterization, molding and simulation /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1382637062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shields, Karen M. "Resin transfer molding with powder-coated preforms." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sun, Xiudong. "Analysis of vacuum-assisted resin transfer molding /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950658548618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sobotka, Vincent. "Optimisation thermique du procédé Resin Transfer Molding." Nantes, 2004. http://www.theses.fr/2004NANT2094.

Full text
Abstract:
Les matériaux composites structuraux, à renfort continus (fibres longues ou tissés) sont de plus en plus utilisés, notamment dans les secteurs automobiles, aéronautiques, nautiques et sportifs. Le procédé Resin Transfer Molding est un procédé de fabrication de pièces composites adapté aux séries moyennes correspondant de plus en plus à celles rencontrées dans l'automobile. Ce procédé répond en outre aux exigences environnementales de non émission de solvant, le moulage étant réalisé en moule fermé. Cette étude réalisée dans le cadre des Programmes de Recherche et d'Innovation dans les Transports Terrestres (PREDIT) du Ministère de l'éducation nationale associait plusieurs partenaires académiques et industriels. Elle s'est intéressée à la caractérisation thermique des matériaux composites à base de polyester insaturé et de renforts en verre, ainsi qu'à leur transformation. On a ainsi effectué l'analyse expérimentale par mesure in-situ et la modélisation des transferts thermiques dans le procédé. Des modèles nouveaux ont été développés et validés. Une première illustration d'une méthodologie d'optimisation thermique du procédé a été montrée
Structural composite materials manufactured with continuous reinforcement (either woven or long fibers) are more and more used, notably in the car industries, aeronautical, nautical and sports domains. The Resin Transfer Molding process is a process of composite part manufacture adapted to average production corresponding more and more to those met in car industries. Besides, this process complies with the environmental requirements of solvent release, molding being achieved in closed mold. This work achieved within the framework of the Programs of Research and Innovation in Ground Transport (PREDIT) of the Ministry of National Education associated several academic and industrial partners. It concerned the thermal characterization of composite materials made of unsaturated polyester and glass reinforcements, as well as their transformation. Experimental analyses were carried out by in-situ measures as well as the modelling of the heat transfer in the process. Some new models have been developed and have been validated. A first illustration of a methodology of thermal optimization of the process has been shown
APA, Harvard, Vancouver, ISO, and other styles
36

Clark, Paul Nordstrom. "Dissolution of mega-voids in resin transfer molding." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3244781.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed February 23, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 191-194).
APA, Harvard, Vancouver, ISO, and other styles
37

Ipek, Hakan. "Modelling Of Resin Transfer Molding For Composites Manufacturing." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606815/index.pdf.

Full text
Abstract:
The resin transfer molding (RTM ) process, in which a thermosetting resin is injected into a mold cavity preloaded with a porous fiber preform, is a manufacturing method for producing advanced continuous fiber reinforced composite products with complex geometries. Numerical simulation of resin transfer molding process is an often needed tool in manufacturing design, in order to analyze the process before the mold is constructed. In this study, a numerical simulation of the resin impregnation process in RTM of composite materials is performed by using and modifying an existing simulation program. The parts that are molded in the simulations have their planar dimensions much larger than their thicknesses. Therefore, the mold filling process can be modeled as two dimensional by neglecting the variations along the thickness direction. The program is capable of simulating two-dimensional, isothermal impregnation processes through orthotropic fiber preforms of planar but complex geometries. The formulations of the physical problem, used in this study, were taken from the theory of macroscopic flow through anisotropic porous media. The formulated governing equation and boundary conditions are solved in a regular-geometry computational domain by transformation through boundary fitted coordinate system. The discretization for numerical solution is performed by the finite difference method. The current study extends the existing capabilities of the simulation program by enabling the simulation of impregnation through non-homogeneous fiber preforms. Furthermore, the capability to simulate injection from two gates (as opposed to a single gate injection that existed before) is developed and added to the program. Various one-dimensional impregnation simulations (as parametric studies) are performed to assess the influence of process parameters. Results are also compared with analytical solutions and found to be in agreement with them. Two-dimensional impregnation simulations are performed for a planar, complex geometry mold. The two-dimensional results are compared with experimental results from the literature and are found to be in acceptable agreement with them. In addition to the study of various parametric variations in two-dimensional impregnation, double-gate resin injection simulations are performed and discussed as well.
APA, Harvard, Vancouver, ISO, and other styles
38

Trevino, Lisandro. "Mold Filling Analysis of Structural Reaction Injection Molding and Resin Transfer Molding." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392736921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nowak, Thomas. "An experimental and numerical investigation of resin transfer molding." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Barksdale, Rhonda Michelle. "Characterization of PR500 for Use in Resin Transfer Molding." W&M ScholarWorks, 1995. https://scholarworks.wm.edu/etd/1539625975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Song, Xiaolan. "Vacuum Assisted Resin Transfer Molding (VARTM): Model Development and Verification." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/27168.

Full text
Abstract:
In this investigation, a comprehensive Vacuum Assisted Resin Transfer Molding (VARTM) process simulation model was developed and verified. The model incorporates resin flow through the preform, compaction and relaxation of the preform, and viscosity and cure kinetics of the resin. The computer model can be used to analyze the resin flow details, track the thickness change of the preform, predict the total infiltration time and final fiber volume fraction of the parts, and determine whether the resin could completely infiltrate and uniformly wet out the preform. Flow of resin through the preform is modeled as flow through porous media. Darcy's law combined with the continuity equation for an incompressible Newtonian fluid forms the basis of the flow model. During the infiltration process, it is well accepted that the total pressure is shared by the resin pressure and the pressure supported by the fiber network. With the progression of the resin, the net pressure applied to the preform decreases as a result of increasing local resin pressure. This leads to the springback of the preform, and is called the springback mechanism. On the other side, the lubrication effect of the resin causes the rearrangement of the fiber network and an increase in the preform compaction. This is called the wetting compaction mechanism. The thickness change of the preform is determined by the relative magnitude of the springback and wetting deformation mechanisms. In the compaction model, the transverse equilibrium equation is used to calculate the net compaction pressure applied to the preform, and the compaction test results are fitted to give the compressive constitutive law of the preform. The Finite Element/Control Volume (FE/CV) method is adopted to find the flow front location and the fluid pressure. The code features the ability of simultaneous integration of 1-D, 2-D and 3-D element types in a single simulation, and thus enables efficient modeling of the flow in complex mold geometries. VARTM of two flat composite panels was conducted to verify the simulation model. The composite panels were fabricated using the SAERTEX multi-axial warp knit carbon fiber fabric and SI-ZG-5A epoxy resin. Panel 1 contained one stack of the carbon fabric, and Panel 2 contained four stacks of the fabric. The parameters verified included the flow front location and preform thickness change. For Panel 1, the flow front locations were accurately predicted while the predicted resin infiltration was much slower than measured for Panel 2. The disagreement is attributed to the permeability model used in the simulation, which failed to consider the interface flow in the unstitched preform containing more than one stack of the fabric under very low compaction force. The predicted transverse displacements agree well with the experimental measurement qualitatively, but not quantitatively. The reasons for the differences were discussed, and further investigations are recommended to develop a more accurate compaction model. The simulation code was also used to investigate the VARTM of a new form of sandwich structure with through-the-thickness reinforcements, which is being considered for use in primary aircraft structure. The infiltration of three foam core sandwich preforms with different stitch densities was studied. The objective of the study was to determine whether the preforms could be completely infiltrated and how the stitch density affects the infiltration process. The visualization experiments were conducted to verify the simulation. The model accurately predicted the resin infiltration patterns. The calculated filling times underpredicted experimental times by 4 to 14%. The model revealed the resin flow details and found that increasing the stitch spacing shortens the total filling time, but increases the nonuniformity of the flow front shape. Extreme nonuniformity of the flow front shape could result in the formation of the voids.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
42

Claus, Steven J. "A cure process model for resin transfer molding of advanced composites." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/52082.

Full text
Abstract:
The resin transfer molding (RTM) process has been identified as a cost-effective fabrication technique for producing composite materials from geometrically complex reinforcements. Processing models can be used to determine the temperature and pressure cycles which will produce a finished part with the best properties in the shortest time. This work involved the development and verification of a processing model for RTM. The processing model is based on the assumption that infiltration can be described as flow through a porous medium. Flow through porous media, as governed by D’Arcy’s law, depends on the viscosity of the fluid and the microstructure of the interconnected pores. Infiltration by thermosetting resin systems is assumed to behave as a Newtonian fluid with a time and temperature dependent viscosity. The kinetics of the resin can be described by mathematical expressions determined from standard thermal analysis techniques. The reinforcement is assumed to be a homogenous, anisotropic material which exhibits strain stiffening, hysteresis and plastic deformation. D’Arcy’s law describes the porous material in terms of the material permeability. Kozeny-Carman’s relationship is used to relate the porosity to the permeability. Solution of D’Arcy’s law is accomplished in a quasi-steady state manner by an evolving mesh finite element technique. After infiltration is completed, the model continues to predict the temperature, degree of cure and viscosity of the resin. The equations governing the unsteady heat transfer are solved with an existing cure model by the finite difference method. Results of the processing model include estimates of infiltration, gel and cure times as well as the cured thickness and fiber volume fraction. Test laminates were fabricated, mechanically tested, and compared to prepregged laminate results. Construction of one of the test laminates was simulated with the processing model to verify the accuracy of the simulation.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
43

Fingerson, John C. "Verification of a three-dimensional resin transfer molding process simulation model." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01312009-063500/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kingsley, Philip John. "Dielectric Monitoring and Control of an Automated Resin Transfer Molding Process." W&M ScholarWorks, 1991. https://scholarworks.wm.edu/etd/1539625663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Al, Omari Ali. "Effect of vacuum level on the vacuum-assisted resin transfer molding process." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0002/MQ43656.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ueda, Stephen. "Visualization of the flow in complex shapes made by resin transfer molding." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/17314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sayre, Jay Randall. "Vacuum-Assisted Resin Transfer Molding (VARTM) Model Development, Verification, and Process Analysis." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/27034.

Full text
Abstract:
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
48

Short, Christina Kaye. "Characterization of Epoxy Resins for use in the Resin Transfer Molding Process." W&M ScholarWorks, 1993. https://scholarworks.wm.edu/etd/1539625806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sakka, Aymen. "Investigation of Heat Conduction Through PMC Components Made Using Resin Transfer Moulding." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23508.

Full text
Abstract:
The increasing demand for polymer matrix composites (PMCs) from the airframe industry raises the issues of productivity, cost and reproducibility of manufactured PMC components. Performance reproducibility is closely related to the manufacturing technique. Resin transfer moulding (RTM) offers the advantage of flexible manufacturing of net-shape PMC components with superior repeatability starting from ready-to-impregnate dry reinforcements. An RTM apparatus was developed for manufacturing PMC plates and demonstrator components representative of actual, PMC components and PMC moulds made and used in the airframe industry. The RTM process developed in this work involved making net-shape dry carbon fibre preforms and impregnating them an epoxy resin, targeting mould applications. Thermal repeatability of different net-shape PMC components manufactured using the RTM apparatus developed in-house was investigated. Effects of bonding an outer copper plate onto the PMC material, targeting mould applications known as integrally heated copper tooling (IHCT), were explored. Heat conduction through the PMC components was studied using simulation models validated by experimental data obtained primarily by thermography. Manufactured PMC components showed good repeatability, particularly in terms of thermal behaviour. The IHCT technique was found to be well suited for mould applications. Expected advantages of thermography were materialised. Finally, the simulation models developed were in good agreement with experimental data.
APA, Harvard, Vancouver, ISO, and other styles
50

Patel, Nirajkumar. "Influence of Processing Variables on Properties of Composites Manufactured by Resin Transfer Molding and Structural Reaction Injection Molding." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1392654484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography