Academic literature on the topic 'Resistance to anti-malaria drugs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resistance to anti-malaria drugs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Resistance to anti-malaria drugs"
Yusuf, Yenni. "ANTI-MALARIAL DRUG RESISTANCE." Majalah Kedokteran Andalas 37, no. 1 (May 3, 2015): 64. http://dx.doi.org/10.22338/mka.v37.i1.p64-69.2014.
Full textFriedrich, M. J. "Resistance to Malaria Drugs." JAMA 305, no. 7 (February 16, 2011): 663. http://dx.doi.org/10.1001/jama.2011.134.
Full textVale, Valdicley Vieira, Dayse Lúcia do Nascimento Brandão, Milena Cristina Martins Da Silva, Denise Bueno, Michael Dean Green, Sandro Percário, and Maria Fani Dolabela. "Malaria parasite resistance vicious cycle." Revista Eletrônica Acervo Saúde 11, no. 18 (December 18, 2019): e1708. http://dx.doi.org/10.25248/reas.e1708.2019.
Full textBell, Angus, and Daniela Boehm. "Anti-disease Therapy for Malaria - ‘Resistance Proof’?" Current Pharmaceutical Design 19, no. 2 (November 1, 2012): 300–306. http://dx.doi.org/10.2174/1381612811306020300.
Full textSalomone, Salvatore, and Théophile Godfraind. "Drugs that reverse chloroquine resistance in malaria." Trends in Pharmacological Sciences 11, no. 11 (November 1990): 475–76. http://dx.doi.org/10.1016/0165-6147(90)90135-u.
Full textRout, Usha K., A. S. Sanket, Brijesh S. Sisodia, Pradyumna K. Mohapatra, Sanghamitra Pati, Rajni Kant, and Gaurav R. Dwivedi. "A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria." Current Drug Targets 21, no. 8 (June 20, 2020): 736–75. http://dx.doi.org/10.2174/1389450121666200129103618.
Full textChahar, Madhvi, Anup Anvikar, and Neena Valecha. "Development and Evaluation of a Novel HNB Based Isothermal Amplification Assay for Fast Detection of Pyrimethamine Resistance (S108N) in Plasmodium falciparum." International Journal of Environmental Research and Public Health 16, no. 9 (May 10, 2019): 1635. http://dx.doi.org/10.3390/ijerph16091635.
Full textSharma, Vijay. "Therapeutic Drugs for Targeting Chloroquine Resistance in Malaria." Mini-Reviews in Medicinal Chemistry 5, no. 4 (April 1, 2005): 337–51. http://dx.doi.org/10.2174/1389557053544029.
Full textSingh, Gajinder Pal. "Dimension reduction of Malaria Box data allows efficient compound prioritization." F1000Research 5 (November 18, 2016): 2701. http://dx.doi.org/10.12688/f1000research.10121.1.
Full textPeters, W. "The problem of drug resistance in malaria." Parasitology 90, no. 4 (April 1985): 705–15. http://dx.doi.org/10.1017/s003118200005232x.
Full textDissertations / Theses on the topic "Resistance to anti-malaria drugs"
Bray, Patrick Gerrard. "Plasmodium falciparum : studies on the mechanism of chloroquine resistance and its reversal." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316597.
Full textGunsaru, Bornface. "Simplified Reversed Chloroquines to Overcome Malaria Resistance to Quinoline-based Drugs." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/400.
Full textOchekpe, N. A. "Some applications of HPLC in the biguanide antimalarial drugs." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383660.
Full textHayton, Karen. "The genetics of resistance to antifolate and sulfa drugs in malaria parasites." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/14032.
Full textVisser, Hanri. "Mechanisms of resistance to new generation anti-TB drugs." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96863.
Full textENGLISH ABSTRACT: Drug resistance in Mycobacterium tuberculosis is an increasing global problem. Drug resistance is mostly caused by single nucleotide polymorphisms (SNPs) within the bacterial genome. This observed increase in global incidence of drug resistant tuberculosis (TB) has sparked the search for new anti-TB drugs and the repurposing of drugs that are currently used against other organisms or species of mycobacteria. One such repurposed drug, clofazimine (CFZ), is currently used for the treatment of leprosy, caused by Mycobacterium leprae. The mechanism of action of CFZ is not clear, but it is hypothesized that CFZ is reduced by a mycobacterial type II NADH oxidoreductase (NDH-2). The reduction of CFZ drives the production of reactive oxygen species (ROS) which is toxic to the pathogen. The aim of this study was to elucidate the mechanism of CFZ resistance. Towards this aim, spontaneous in vitro CFZ resistant mutants were selected, characterized and whole genome was used identify SNPs which may cause CFZ resistance. Mutations were identified in a transcriptional regulator encoded by Rv0678, fatty-acid-AMP ligase, or FadD28 (Rv2941) and glycerol kinase or GlpK (Rv3696c). Mutations in Rv0678 have previously been shown to play a role in both CFZ resistance and bedaquiline (BDQ) cross-resistance, while no link has been found between CFZ resistance and mutations in fadD28 and glpK. The novel, non-synonymous SNP identified in Rv0678 resulted in the replacement of an alanine residue with threonine at codon 84, which is located in the DNA binding domain. Virtual modelling of the mutated Rv0678 protein showed that the A84T mutation may influence DNA binding, possibly due to its proximity to the DNA binding domain. This mutation caused a change in hydrophobicity, which may influence binding to DNA. Previous studies showed that mutations in Rv0678 resulted in the upregulation of mmpL5, a putative efflux pump. However, the mechanism whereby CFZ resistance occurs via increased abundance of this efflux pump in the cell wall is not clear and needs further investigation. The cross-resistance between CFZ and BDQ, caused by mutations in Rv0678, is of concern and may influence the planning of anti-TB drug regimens for the future. The roles of the other two mutations identified in this study in CFZ resistance is also not clear and requires further investigation. Finally, the findings of this study support the role of Rv0678 in CFZ resistance thereby suggesting that this gene could be useful as a diagnostic marker to test for CFZ resistance in clinical isolates.
AFRIKAANSE OPSOMMING: Middelweerstandigheid in Mycobacterium tuberculosis is 'n wêreldwye toenemende probleem. Middelweerstandigheid word meestal veroorsaak deur enkel nukleotied polimorfismes (SNPs) in die bakteriële genoom. Hierdie toename in middelweerstandige tuberkulose (TB) het gelei tot die soektog na nuwe anti-TB-middels en die alternatiewe aanwending van middels wat tans teen ander organismes of spesies van mikobakterieë gebruik word. Een so 'n alternatiewe middel, clofazimine (CFZ), word tans gebruik vir die behandeling van melaatsheid wat veroorsaak word deur Mycobacterium leprae. CFZ se meganisme van werking is nie duidelik nie, maar dit word vermoed dat CFZ gereduseer word deur 'n mikobakteriële tipe II NADH oksidoreduktase (NDH-2). Die reduksie van CFZ dryf die produksie van reaktiewe suurstof spesies wat giftig is vir die patogeen. Die doel van hierdie studie was om die meganisme van CFZ weerstandigheid te ondersoek. Om hierdie doel te bereik was spontane in vitro CFZ weerstandige mutante gekies, gekarakteriseer en heel genoom volgorde bepaling is gebruik om SNPs te identifiseer wat CFZ weerstandigheid veroorsaak. Mutasies in Rv0678, 'n transkripsie reguleerder, vetsuur-AMP ligase, of FadD28 (Rv2941) en gliserol kinase of GlpK (Rv3696c) geïdentifiseer. Dit is al voorheen gevind dat mutasies in Rv0678 ‘n rol speel in beide CFZ weerstandigheid en bedaquiline (BDQ) kruis-weerstandigheid, terwyl geen verband gevind is tussen CFZ weerstandigheid en mutasies in fadD28 en glpK nie. Die nuwe, nie-sinonieme SNP, geïdentifiseer in Rv0678 het gelei to die vervanging van 'n alanien aminosuur met treonien by kodon 84, wat geleë is in die DNS bindings domein. Virtuele modellering van die gemuteerde Rv0678 proteïen het getoon dat die A84T mutasie DNS binding moontlik kan beïnvloed, as gevolg van sy nabyheid aan die DNS bindings domein. Hierdie mutasie veroorsaak 'n verandering in die hidrofobiese natuur, wat DNS binding kan beïnvloed. Vorige studies het getoon dat mutasies in Rv0678 lei tot die opregulering van mmpL5, 'n waarskynlike uitvloei pomp. Die meganisme waardeur CFZ weerstandigheid veroorsaak, deur ‘n groot aantal van hierdie uitvloei pompe in die selwand, is nie duidelik nie en moet verder ondersoek word. Die kruis-weerstandigheid tussen CFZ en BDQ, wat veroorsaak word deur mutasies in Rv0678, is van belang en kan die beplanning van anti-TB middel behandeling vir die toekoms beïnvloed. Die rolle van die ander twee mutasies, wat in hierdie studie geïdentifiseer is, in CFZ weerstandigheid is ook nie duidelik nie en vereis verdere ondersoek. Ten slotte, die bevindinge van hierdie studie steun die rol van Rv0678 in CFZ weerstandigheid en dit dui daarop dat hierdie geen gebruik kan word as 'n diagnostiese merker om vir CFZ weerstandigheid te toets in kliniese isolate.
Matthews, Amanda. "A Mathematical Model for Anti-Malarial Drug Resistance." VCU Scholars Compass, 2009. http://scholarscompass.vcu.edu/etd/1721.
Full textAdagu, Ipemida Sullayman. "Pharmacological and molecular characterisation of Plasmodium falciparum isolates from Zaria, Nigeria." Thesis, London School of Hygiene and Tropical Medicine (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336559.
Full textWhite, Alex William. "The design of novel inhibitors of poly (ADP-ribose) polymerase to potentiate cytotoxic drugs." Thesis, University of Newcastle Upon Tyne, 1996. http://hdl.handle.net/10443/1025.
Full textSmith, Victoria. "Mechanisms of resistance to novel cell signalling inhibitor based anti-cancer drugs." Thesis, Institute of Cancer Research (University Of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271024.
Full textLindström, Anna. "Resistance to antiviral drugs in HIV and HBV /." Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-239-X/.
Full textBooks on the topic "Resistance to anti-malaria drugs"
Hiscox, Stephen, Julia Gee, and Robert I. Nicholson, eds. Therapeutic Resistance to Anti-Hormonal Drugs in Breast Cancer. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8526-0.
Full textArrow, Kenneth Joseph, Hellen Gelband, and Claire Panosian. Saving lives, buying time: Economics of malaria drugs in an age of resistance. Edited by Institute of Medicine (U.S.). Committee on the Economics of Antimalarial Drugs and NetLibrary Inc. Washington, D.C: National Academies Press, 2004.
Find full textJulia, Gee, Nicholson Robert I, and SpringerLink (Online service), eds. Therapeutic Resistance to Anti-Hormonal Drugs in Breast Cancer: New Molecular Aspects and their Potential as Targets. Dordrecht: Springer Netherlands, 2009.
Find full textEnzybiotics: Antibiotic enzymes as drugs and therapeutics. Hoboken, N.J: John Wiley & Sons, 2010.
Find full textChŏng, Yun-hŭi. Chʻuksan hwanʼgyŏng ŭi naesŏng chosa mit yŏnghyang pʻyŏngka =: A study on antibiotic resistance and effect assessment in domestic livestock environment. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.
Find full textPeters, Wallace. Chemotherapy and drug resistance in malaria. 2nd ed. London: Academic Press, 1987.
Find full textPolicies and incentives for promoting innovation in antibiotic research. [S.l.]: European Observatory on Health Systems and Policies, 2010.
Find full textArora, Gunjan, Andaleeb Sajid, and Vipin Chandra Kalia, eds. Drug Resistance in Bacteria, Fungi, Malaria, and Cancer. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48683-3.
Full textGlobal Project on Anti-tuberculosis Drug Resistance Surveillance 1994-1997. Anti-tuberculosis drug resistance in the world. Geneva: Global Tuberculosis Programme, WHO, 1997.
Find full textBook chapters on the topic "Resistance to anti-malaria drugs"
Bhetariya, Preetida J., Neha Sharma, Pragati Singh, Priyanka Tripathi, Santosh K. Upadhyay, and Poonam Gautam. "Human Fungal Pathogens and Drug Resistance Against Azole Drugs." In Drug Resistance in Bacteria, Fungi, Malaria, and Cancer, 387–428. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48683-3_18.
Full textMehlotra, Rajeev K., and Peter A. Zimmerman. "Resistance to Antimalarial Drugs: Parasite and Host Genetic Factors." In Malaria: Genetic and Evolutionary Aspects, 81–124. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/0-387-28295-5_5.
Full textSatake, Kazuhiro, Yu Toyoda, and Hiroshi Nakagawa. "Drugs Affecting Epigenetic Modifications of ABC Transporters for Drug Resistance." In Resistance to Targeted Anti-Cancer Therapeutics, 273–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09801-2_11.
Full textLange, Joep M. A., and Julio S. G. Montaner. "Anti-Retroviral Therapy and Resistance to Anti-Retroviral Drugs." In AIDS Pathogenesis, 221–42. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-0685-8_13.
Full textAudino, Anthony N., and Mitchell S. Cairo. "Resistance to Checkpoint Blockade Inhibitors and Immunomodulatory Drugs." In Resistance to Targeted Anti-Cancer Therapeutics, 155–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24424-8_7.
Full textPatel, Atish, De-Shen Wang, Hong-May Sim, Suresh V. Ambudkar, and Zhe-Sheng Chen. "ABC Transporter Modulatory Drugs from Marine Sources: A New Approach to Overcome Drug Resistance in Cancer." In Resistance to Targeted Anti-Cancer Therapeutics, 183–208. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09801-2_8.
Full textPatel, Atish, De-Shen Wang, Hong-May Sim, Suresh V. Ambudkar, and Zhe-Sheng Chen. "Erratum to: ABC Transporter Modulatory Drugs from Marine Sources: A New Approach to Overcome Drug Resistance in Cancer." In Resistance to Targeted Anti-Cancer Therapeutics, E1. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09801-2_12.
Full textWang, Man-Tzu, Hongmei Jiang, Debasish Boral, and Daotai Nie. "Cancer Stem Cells in Resistance to Cytotoxic Drugs: Implications in Chemotherapy." In Resistance to Targeted Anti-Cancer Therapeutics, 151–61. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7070-0_8.
Full textWollheim, Frank A. "Mechanisms of Gold Resistance." In Basis for Variability of Response to Anti-Rheumatic Drugs, 178–83. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9160-8_16.
Full textCappuzzo, Federico. "Resistance to anti-angiogenic drugs and therapeutic options." In Guide to Targeted Therapies: Treatment Resistance in Lung Cancer, 61–66. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20741-4_6.
Full textConference papers on the topic "Resistance to anti-malaria drugs"
Settleman, Jeff. "Abstract IA09: Non-mutational resistance to anti-cancer drugs." In Abstracts: AACR Precision Medicine Series: Targeting the Vulnerabilities of Cancer; May 16-19, 2016; Miami, FL. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1557-3265.pmccavuln16-ia09.
Full textCorso, Simona, Maria Apicella, and Silvia Giordano. "Abstract B12: Understanding the role of the tumor microenvironment in mediating resistance to anti-MET drugs." In Abstracts: AACR Precision Medicine Series: Drug Sensitivity and Resistance: Improving Cancer Therapy; June 18-21, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1557-3265.pms14-b12.
Full textDereli-Korkut, Zeynep, and Sihong Wang. "Microfluidic Cell Arrays to Mimic 3D Tissue Microenvironment." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80411.
Full textShimoda, M., Y. Chihara, N. Kagara, Y. Naoi, A. Shimomura, K. Shimazu, SJ Kim, and S. Noguchi. "Abstract P3-06-05: Importance of TGFβ-SMAD3 axis in resistance to anti-HER2 drugs." In Abstracts: Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.sabcs15-p3-06-05.
Full textBalasaniantc, Goar, Zhanna Rakisheva, Anna Zepke, Akmaral Akisheva, and Nataliya Solovjeva. "Spreading of resistance to group A anti-tuberculosis drugs among TB patients in Astana city." In ERS International Congress 2018 abstracts. European Respiratory Society, 2018. http://dx.doi.org/10.1183/13993003.congress-2018.pa4744.
Full textBerger, C. A., C. Allender, M. N. Hunat, A. G. Sedusta, C. A. Sacopon, J. Sabalboro, J. E. Bascuña, et al. "Frequency of Herero-Resistance to First- and Second-Line Anti-Tuberculosis (TB) Drugs in a Population-Based Sample of Drug-Resistant TB Patients." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5165.
Full textPanova, Anna, Anatoliy Vinokurov, Denis Lagutkin, Alexandra Gracheva, Aleksander Nikolaev, Anastasia Samoilova, and Irina Vasilyeva. "Application of next-generation sequencing to detect MTB resistance to first- and second-line anti-TB drugs." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.1605.
Full textChhajed, Prashant N., Arvind Kate, H. S. Sandeepa, Parag Chaudhari, Santhakumar Subramanian, David Miedinger, Joerg Leuppi, and Michael Tamm. "Resistance Pattern To WHO CATEGORY IV Anti-Tuberculous Drugs In Patients Suspected Of Multidrug Resistance Tuberculosis Presenting To A Specialist Clinic In Mumbai, India." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3310.
Full textWallin, Jeffrey J., Jane Guan, Yang Xiao, Tom O'Brien, Marcia Belvin, and Lori S. Friedman. "Abstract 298: Mutant PIK3CA increases the expression of individual tubulin isoforms and promotes resistance to anti-mitotic chemotherapy drugs." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-298.
Full textWu, Xiaojuan, Hui Xiao, Chenglong Li, and Jiayuh Lin. "Abstract 2050: Persistent STAT3 signaling contributes to the resistance of anti cancer drugs doxorubicin and cisplatin, and MEK inhibitor AZD6244 in human sarcoma cells." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2050.
Full textReports on the topic "Resistance to anti-malaria drugs"
Gunsaru, Bornface. Simplified Reversed Chloroquines to Overcome Malaria Resistance to Quinoline-based Drugs. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.400.
Full textCollins, Tammy R., and Tao-shih Hsieh. Mechanistic Basis of Sensitivity/Resistance Towards Anti-Cancer Drugs Targeting Topoisomerase II. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada437191.
Full textCollins, Tammy R., and Tao-shih Hsieh. Mechanistic Basis of Sensitivity/Resistance Towards Anti-cancer Drugs Targeting Topoisomerase II. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada455978.
Full textLiebman, Katherine. New 4-Aminoquinoline Compounds to Reverse Drug Resistance in P. falciparum Malaria, and a Survey of Early European Antimalarial Treatments. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2112.
Full text