Journal articles on the topic 'Resistive memories (RRAMs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Resistive memories (RRAMs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kim, Kyoungdu, Woongki Hong, Changmin Lee, et al. "Sol-gel-processed amorphous-phase ZrO2 based resistive random access memory." Materials Research Express 8, no. 11 (2021): 116301. http://dx.doi.org/10.1088/2053-1591/ac3400.
Full textLin, Wu, and Chen. "Effects of Sm2O3 and V2O5 Film Stacking on Switching Behaviors of Resistive Random Access Memories." Crystals 9, no. 6 (2019): 318. http://dx.doi.org/10.3390/cryst9060318.
Full textAguilera-Pedregosa, Cristina, David Maldonado, Mireia B. González, et al. "Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories." Micromachines 14, no. 3 (2023): 630. http://dx.doi.org/10.3390/mi14030630.
Full textJha, Rashmi, Vamshi Kiran Kiran Gogi, and Siddharth Barve. "(Invited) Novel Neuromorphic Computing Paradigms Enabled By Emerging Memory Devices." ECS Meeting Abstracts MA2024-01, no. 57 (2024): 3011. http://dx.doi.org/10.1149/ma2024-01573011mtgabs.
Full textArumí, Daniel, Salvador Manich, Álvaro Gómez-Pau, et al. "Impact of Laser Attacks on the Switching Behavior of RRAM Devices." Electronics 9, no. 1 (2020): 200. http://dx.doi.org/10.3390/electronics9010200.
Full textAnsh and Mayank Shrivastava. "Superior resistance switching in monolayer MoS2 channel-based gated binary resistive random-access memory via gate-bias dependence and a unique forming process." Journal of Physics D: Applied Physics 55, no. 8 (2021): 085102. http://dx.doi.org/10.1088/1361-6463/ac3281.
Full textShu, Pan, Xiaofei Cao, Yongqiang Du, et al. "Resistive switching performance of fibrous crosspoint memories based on an organic–inorganic halide perovskite." Journal of Materials Chemistry C 8, no. 37 (2020): 12865–75. http://dx.doi.org/10.1039/d0tc02579h.
Full textAlimkhanuly, Batyrbek, Sanghoek Kim, Lok-won Kim, and Seunghyun Lee. "Electromagnetic Analysis of Vertical Resistive Memory with a Sub-nm Thick Electrode." Nanomaterials 10, no. 9 (2020): 1634. http://dx.doi.org/10.3390/nano10091634.
Full textVasileiadis, Nikolaos, Vasileios Ntinas, Georgios Ch Sirakoulis, and Panagiotis Dimitrakis. "In-Memory-Computing Realization with a Photodiode/Memristor Based Vision Sensor." Materials 14, no. 18 (2021): 5223. http://dx.doi.org/10.3390/ma14185223.
Full textPoddar, Swapnadeep, Yuting Zhang, Zhesi Chen, Zichao Ma, and Zhiyong Fan. "(Digital Presentation) Resistive Switching and Brain-Inspired Computing in Perovskite Nanowires and Quantum Wires." ECS Meeting Abstracts MA2022-02, no. 36 (2022): 1336. http://dx.doi.org/10.1149/ma2022-02361336mtgabs.
Full textMinguet Lopez, J., T. Hirtzlin, M. Dampfhoffer, et al. "OxRAM + OTS optimization for binarized neural network hardware implementation." Semiconductor Science and Technology 37, no. 1 (2021): 014001. http://dx.doi.org/10.1088/1361-6641/ac31e2.
Full textAli, Sarfraz, Muhammad Abaid Ullah, Ali Raza, et al. "Recent Advances in Cerium Oxide-Based Memristors for Neuromorphic Computing." Nanomaterials 13, no. 17 (2023): 2443. http://dx.doi.org/10.3390/nano13172443.
Full textPoddar, Swapnadeep, and Zhiyong Fan. "(Invited) Revolutionizing Data Storage and Brain-Inspired Computing with Perovskite Nanowires and Quantum Wires." ECS Meeting Abstracts MA2024-02, no. 20 (2024): 1803. https://doi.org/10.1149/ma2024-02201803mtgabs.
Full textArashloo, Banafsheh Alizadeh. "Cupper doping effect on the electrical characteristics of TiO2 based Memristor." Brilliant Engineering 2, no. 1 (2020): 19–24. http://dx.doi.org/10.36937/ben.2021.001.004.
Full textWANG, SHENG-YU, and TSEUNG-YUEN TSENG. "INTERFACE ENGINEERING IN RESISTIVE SWITCHING MEMORIES." Journal of Advanced Dielectrics 01, no. 02 (2011): 141–62. http://dx.doi.org/10.1142/s2010135x11000306.
Full textVinuesa, Guillermo, Hector Garcia, Salvador Duenas, et al. "Effect of the Temperature on the Performance and Dynamic Behavior of HfO2-Based Rram Devices." ECS Meeting Abstracts MA2024-01, no. 21 (2024): 1297. http://dx.doi.org/10.1149/ma2024-01211297mtgabs.
Full textQian, Kai, Viet Cuong Nguyen, Tupei Chen, and Pooi See Lee. "Novel concepts in functional resistive switching memories." Journal of Materials Chemistry C 4, no. 41 (2016): 9637–45. http://dx.doi.org/10.1039/c6tc03447k.
Full textChen, Tong, Kangmin Leng, Zhongyuan Ma, et al. "Tracing the Si Dangling Bond Nanopathway Evolution ina-SiNx:H Resistive Switching Memory by the Transient Current." Nanomaterials 13, no. 1 (2022): 85. http://dx.doi.org/10.3390/nano13010085.
Full textWan, Zhenni, Robert B. Darling, and M. P. Anantram. "Vanadium Oxide Based RRAM Device." MRS Advances 2, no. 52 (2017): 3019–24. http://dx.doi.org/10.1557/adv.2017.442.
Full textDash, C. S., and S. R. S. Prabaharan. "Science and Technological Understanding of Nano-ionic Resistive Memories (RRAM)." Nanoscience & Nanotechnology-Asia 9, no. 4 (2019): 444–61. http://dx.doi.org/10.2174/2210681208666180621095241.
Full textMolas, Gabriel, Gilbert Sassine, Cecile Nail, et al. "(Invited) Resistive Memories (RRAM) Variability: Challenges and Solutions." ECS Transactions 86, no. 3 (2018): 35–47. http://dx.doi.org/10.1149/08603.0035ecst.
Full textLee, Yunseok, Jiung Jang, Beomki Jeon, Kisong Lee, Daewon Chung, and Sungjun Kim. "Resistive Switching Characteristics of Alloyed AlSiOx Insulator for Neuromorphic Devices." Materials 15, no. 21 (2022): 7520. http://dx.doi.org/10.3390/ma15217520.
Full textKoohzadi, Pooria, Mohammad Taghi Ahmadi, Javad Karamdel, and Truong Khang Nguyen. "Graphene band engineering for resistive random-access memory application." International Journal of Modern Physics B 34, no. 18 (2020): 2050171. http://dx.doi.org/10.1142/s0217979220501714.
Full textPérez, Eduardo, Florian Teply, and Christian Wenger. "Electrical study of radiation hard designed HfO2-based 1T-1R RRAM devices." MRS Advances 2, no. 4 (2016): 223–28. http://dx.doi.org/10.1557/adv.2016.616.
Full textWang, Li-Wen, Chih-Wei Huang, Ke-Jing Lee, Sheng-Yuan Chu, and Yeong-Her Wang. "Multi-Level Resistive Al/Ga2O3/ITO Switching Devices with Interlayers of Graphene Oxide for Neuromorphic Computing." Nanomaterials 13, no. 12 (2023): 1851. http://dx.doi.org/10.3390/nano13121851.
Full textYalon, E., I. Karpov, V. Karpov, I. Riess, D. Kalaev, and D. Ritter. "Detection of the insulating gap and conductive filament growth direction in resistive memories." Nanoscale 7, no. 37 (2015): 15434–41. http://dx.doi.org/10.1039/c5nr03314d.
Full textNapolean, A., N. M. Sivamangai, S. Rajesh, et al. "Effects of Ambient and Annealing Temperature in HfO2 Based RRAM Device Modeling and Circuit-Level Implementation." ECS Journal of Solid State Science and Technology 11, no. 2 (2022): 023012. http://dx.doi.org/10.1149/2162-8777/ac557b.
Full textZhang, Donglin, Bo Peng, Yulin Zhao, et al. "Sensing Circuit Design Techniques for RRAM in Advanced CMOS Technology Nodes." Micromachines 12, no. 8 (2021): 913. http://dx.doi.org/10.3390/mi12080913.
Full textYang, Seyeong, Jongmin Park, Youngboo Cho, Yunseok Lee, and Sungjun Kim. "Enhanced Resistive Switching and Synaptic Characteristics of ALD Deposited AlN-Based RRAM by Positive Soft Breakdown Process." International Journal of Molecular Sciences 23, no. 21 (2022): 13249. http://dx.doi.org/10.3390/ijms232113249.
Full textRuiz-Castro, Juan E., Christian Acal, Ana M. Aguilera, and Juan B. Roldán. "A Complex Model via Phase-Type Distributions to Study Random Telegraph Noise in Resistive Memories." Mathematics 9, no. 4 (2021): 390. http://dx.doi.org/10.3390/math9040390.
Full textLahbacha, Khitem, Fakhreddine Zayer, Hamdi Belgacem, Wael Dghais, and Antonio Maffucci. "Performance Enhancement of Large Crossbar Resistive Memories With Complementary and 1D1R-1R1D RRAM Structures." IEEE Open Journal of Nanotechnology 2 (2021): 111–19. http://dx.doi.org/10.1109/ojnano.2021.3124846.
Full textLa Torraca, Paolo, Francesco Maria Puglisi, Andrea Padovani, and Luca Larcher. "Multiscale Modeling for Application-Oriented Optimization of Resistive Random-Access Memory." Materials 12, no. 21 (2019): 3461. http://dx.doi.org/10.3390/ma12213461.
Full textKhan, Mohammad Nasim Imtiaz, Shivam Bhasin, Bo Liu, Alex Yuan, Anupam Chattopadhyay, and Swaroop Ghosh. "Comprehensive Study of Side-Channel Attack on Emerging Non-Volatile Memories." Journal of Low Power Electronics and Applications 11, no. 4 (2021): 38. http://dx.doi.org/10.3390/jlpea11040038.
Full textHuang, Yanzi, Lingyu Wan, Jiang Jiang, Liuyan Li, and Junyi Zhai. "Self-Powered Resistance-Switching Properties of Pr0.7Ca0.3MnO3 Film Driven by Triboelectric Nanogenerator." Nanomaterials 12, no. 13 (2022): 2199. http://dx.doi.org/10.3390/nano12132199.
Full textOtsus, Markus, Joonas Merisalu, Aivar Tarre, et al. "Bipolar Resistive Switching in Hafnium Oxide-Based Nanostructures with and without Nickel Nanoparticles." Electronics 11, no. 18 (2022): 2963. http://dx.doi.org/10.3390/electronics11182963.
Full textPérez, Eduardo, Óscar González Ossorio, Salvador Dueñas, Helena Castán, Héctor García, and Christian Wenger. "Programming Pulse Width Assessment for Reliable and Low-Energy Endurance Performance in Al:HfO2-Based RRAM Arrays." Electronics 9, no. 5 (2020): 864. http://dx.doi.org/10.3390/electronics9050864.
Full textCario, Laurent, Cristian Vaju, Benoit Corraze, Vincent Guiot, and Etienne Janod. "Electric-Field-Induced Resistive Switching in a Family of Mott Insulators: Towards a New Class of RRAM Memories." Advanced Materials 22, no. 45 (2010): 5193–97. http://dx.doi.org/10.1002/adma.201002521.
Full textKhan, Mohammad Nasim Imtiaz, and Swaroop Ghosh. "Comprehensive Study of Security and Privacy of Emerging Non-Volatile Memories." Journal of Low Power Electronics and Applications 11, no. 4 (2021): 36. http://dx.doi.org/10.3390/jlpea11040036.
Full textRodrigues, Julia, Michael Liang, Pranav Choori, and Ethan Ahn. "Re-Looking at Silicon Oxide for Neuromorphic Computing." ECS Meeting Abstracts MA2025-01, no. 63 (2025): 3079. https://doi.org/10.1149/ma2025-01633079mtgabs.
Full textQuiroz, Heiddy P., Jorge A. Calderón, and A. Dussan. "Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM)." Journal of Alloys and Compounds 840 (November 2020): 155674. http://dx.doi.org/10.1016/j.jallcom.2020.155674.
Full textMounica, J., and G. V. Ganesh. "Design Of A Nonvolatile 8T1R SRAM Cell For Instant-On Operation." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 3 (2016): 1183. http://dx.doi.org/10.11591/ijece.v6i3.9448.
Full textMounica, J., and G. V. Ganesh. "Design Of A Nonvolatile 8T1R SRAM Cell For Instant-On Operation." International Journal of Electrical and Computer Engineering (IJECE) 6, no. 3 (2016): 1183. http://dx.doi.org/10.11591/ijece.v6i3.pp1183-1189.
Full textZeinati, Aseel, Durgamadhab Misra, Bhavana Padala, et al. "A Comparative Study of H-Plasma Treated ZrO2 and HfO2 RRAM Devices for Low Power in-Memory Computing." ECS Meeting Abstracts MA2025-01, no. 63 (2025): 3073. https://doi.org/10.1149/ma2025-01633073mtgabs.
Full textVinuesa, Guillermo, Hector Garcia, Salvador Duenas, and Helena Castan. "(Invited) Thermoelectric Analysis of Dielectric Materials Properties for Neuromorphic Technologies." ECS Meeting Abstracts MA2024-01, no. 21 (2024): 1294. http://dx.doi.org/10.1149/ma2024-01211294mtgabs.
Full textLi, Rongbin, Yan Sun, Qianyu Zhao, et al. "NIR-Triggered Logic Gate in MXene-Modified Perovskite Resistive Random Access Memory." Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d3tc03847e.
Full textIelmini, Daniele, Federico Nardi, Carlo Cagli, and Andrea L. Lacaita. "Size-dependent Temperature Instability in NiO–based Resistive Switching Memory." MRS Proceedings 1250 (2010). http://dx.doi.org/10.1557/proc-1250-g05-03.
Full textPan, Wen, Lai Wang, Jianshi Tang, et al. "Optoelectronic array of photodiodes integrated with RRAMs for energy-efficient in-sensor computing." Light: Science & Applications 14, no. 1 (2025). https://doi.org/10.1038/s41377-025-01743-y.
Full text"Comprehensive Examination on Resistive Random Access Memory." International Journal of Recent Technology and Engineering 8, no. 4 (2019): 4663–67. http://dx.doi.org/10.35940/ijrte.d8398.118419.
Full textLi, Yang, Shahar Kvatinsky, and Lior Kornblum. "Harnessing Conductive Oxide Interfaces for Resistive Random-Access Memories." Frontiers in Physics 9 (October 27, 2021). http://dx.doi.org/10.3389/fphy.2021.772238.
Full textBouzouita, Manel, Shashikant Pathak, Fakhreddine Zayer, Hamdi Belgacem, and Ioulia Tzouvadaki. "Advanced memristive architectures based on nanomaterials for biomedical applications: a mini review." Frontiers in Nanotechnology 7 (April 23, 2025). https://doi.org/10.3389/fnano.2025.1558743.
Full text