Academic literature on the topic 'Resistive random-access memory, ReRAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resistive random-access memory, ReRAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Resistive random-access memory, ReRAM"
Kim, Hyojung, Ji Su Han, Sun Gil Kim, Soo Young Kim, and Ho Won Jang. "Halide perovskites for resistive random-access memories." Journal of Materials Chemistry C 7, no. 18 (2019): 5226–34. http://dx.doi.org/10.1039/c8tc06031b.
Full textAkinaga, Hiroyuki, and Hisashi Shima. "Resistive Random Access Memory (ReRAM) Based on Metal Oxides." Proceedings of the IEEE 98, no. 12 (2010): 2237–51. http://dx.doi.org/10.1109/jproc.2010.2070830.
Full textShan, Yingying, Zhensheng Lyu, Xinwei Guan, et al. "Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites." Physical Chemistry Chemical Physics 20, no. 37 (2018): 23837–46. http://dx.doi.org/10.1039/c8cp03945c.
Full textChen, Yu-Li, Mon-Shu Ho, Wen-Jay Lee, Pei-Fang Chung, Babu Balraj, and Chandrasekar Sivakumar. "The mechanism underlying silicon oxide based resistive random-access memory (ReRAM)." Nanotechnology 31, no. 14 (2020): 145709. http://dx.doi.org/10.1088/1361-6528/ab62ca.
Full textLee, Hong Sub, Kyung Mun Kang, Woo Je Han, et al. "A Study on the Resistive Switching of La0.7Sr0.3MnO3 Film Using Spectromicroscopy." Applied Mechanics and Materials 597 (July 2014): 184–87. http://dx.doi.org/10.4028/www.scientific.net/amm.597.184.
Full textMoriyama, Takumi, Takahiro Yamasaki, Takahisa Ohno, Satoru Kishida, and Kentaro Kinoshita. "Formation Mechanism of Conducting Path in Resistive Random Access Memory by First Principles Calculation Using Practical Model Based on Experimental Results." MRS Advances 1, no. 49 (2016): 3367–72. http://dx.doi.org/10.1557/adv.2016.461.
Full textNakamura, Hisao, and Yoshihiro Asai. "Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models." Physical Chemistry Chemical Physics 18, no. 13 (2016): 8820–26. http://dx.doi.org/10.1039/c6cp00916f.
Full textLodhi, Anil, Shalu Saini, Anurag Dwivedi, Arpit Khandelwal, and Shree Prakash Tiwari. "Bipolar resistive switching properties of TiO x /graphene oxide doped PVP based bilayer ReRAM." Journal of Micromechanics and Microengineering 32, no. 4 (2022): 044001. http://dx.doi.org/10.1088/1361-6439/ac521f.
Full textКрасников, Г. Я., О. М. Орлов та В. В. Макеев. "ИССЛЕДОВАНИЕ ЭФФЕКТА ПЕРЕКЛЮЧЕНИЯ И ТРАНСПОРТА ЗАРЯДА В БЕСФОРМОВОЧНОМ МЕМРИСТОРЕ НА ОСНОВЕ НИТРИДА КРЕМНИЯ С РАЗНЫМИ ТИПАМИ МЕТАЛЛА ВЕРХНЕГО ЭЛЕКТРОДА, "Электронная техника. Серия 3. Микроэлектроника"". Электронная техника. Серия 3. Микроэлектроника, № 1 (2020): 42–46. http://dx.doi.org/10.7868/s2410993220010054.
Full textMin, Shin-Yi, and Won-Ju Cho. "Resistive Switching Characteristics of Nonvolatile Memory with HSQ Film Using Microwave Irradiation." Journal of Nanoscience and Nanotechnology 20, no. 8 (2020): 4740–45. http://dx.doi.org/10.1166/jnn.2020.17805.
Full textDissertations / Theses on the topic "Resistive random-access memory, ReRAM"
Li, Yanlong. "The Investigation of Inorganic Co Based ReRAM Devices and Organic Cu Doped PANI-CSA Top Electrode Based ReRAM Devices." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/97191.
Full textSchultz, Thomas. "ReRAM based platform for monitoring IC integrity and aging." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573576246158436.
Full textJovanovic, Natalija. "Bascules et registres non-volatiles à base de ReRAM en technologies CMOS avancées." Electronic Thesis or Diss., Paris, ENST, 2016. http://www.theses.fr/2016ENST0023.
Full textTan, Scott H. (Scott Howard). "Neuromorphic computing systems : crystalline resistive random access memory." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127915.
Full textChowdhury, Madhumita. "NiOx Based Resistive Random Access Memories." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1325535812.
Full textLong, Branden Michael. "Fabrication and Characterization of HfO2 Based Resistive Random Access Memory Devices." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1365166054.
Full textParks, Jared D. "Hardware Authentication Enhancement of Resistive Random Access Memory Physical Unclonable Functions." Thesis, Northern Arizona University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10253956.
Full textValverde, Lucas. "Conception de cellules bipolaires commutables pour la technologie « Resistive Random Access Memory »." Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/6041.
Full textKuan-LunFu and 傅冠倫. "Investigating the Plausibility of Integrating the Resistive Random-Access Memory (ReRAM) with Vertically-Coupled Microdisk Resonator (VCMR)." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/xu7ppb.
Full textYou-KuiHu and 胡宥奎. "Impact of Ultraviolet Light Radiation on the Switching Characteristics of Resistive Random-Access Memory (ReRAM) Devices of Different Dimensions." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/z7d3x8.
Full textBooks on the topic "Resistive random-access memory, ReRAM"
Yu, Shimeng. Resistive Random Access Memory (RRAM). Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8.
Full textBook chapters on the topic "Resistive random-access memory, ReRAM"
Yu, Shimeng. "RRAM Characterization and Modeling." In Resistive Random Access Memory (RRAM). Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_3.
Full textYu, Shimeng. "Introduction to RRAM Technology." In Resistive Random Access Memory (RRAM). Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_1.
Full textYu, Shimeng. "RRAM Array Architecture." In Resistive Random Access Memory (RRAM). Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_4.
Full textYu, Shimeng. "RRAM Device Fabrication and Performances." In Resistive Random Access Memory (RRAM). Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02030-8_2.
Full textPuglisi, F. M. "Noise in Resistive Random Access Memory Devices." In Noise in Nanoscale Semiconductor Devices. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37500-3_3.
Full textZhuo, Victor Yiqian, Zhixian Chen, and King Jien Chui. "Resistive Random Access Memory Device Physics and Array Architectures." In Emerging Non-volatile Memory Technologies. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6912-8_10.
Full textGilmer, David C., and Gennadi Bersuker. "Fundamentals of Metal-Oxide Resistive Random Access Memory (RRAM)." In Nanostructure Science and Technology. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91896-9_3.
Full textSribhuvaneshwari, H., and K. Suthendran. "A Novel March C2RR Algorithm for Nanoelectronic Resistive Random Access Memory (RRAM) Testing." In Communications in Computer and Information Science. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5950-7_48.
Full textNagata, Takahiro. "Bias-Induced Interfacial Redox Reaction in Oxide-Based Resistive Random-Access Memory Structure." In NIMS Monographs. Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-54850-8_4.
Full textTak, Sheetal, and Madan Mali. "Efficient Resistive Defect Detection Technique for Performance Enhancement of Static Random Access Memory." In Lecture Notes in Electrical Engineering. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3690-5_75.
Full textConference papers on the topic "Resistive random-access memory, ReRAM"
Kinoshita, K., R. Koishi, T. Moriyama, et al. "Reproducing Resistive Switching Effect by Soret and Fick Diffusion in Resistive Random Access Memory (ReRAM)." In 2015 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2015. http://dx.doi.org/10.7567/ssdm.2015.o-3-4.
Full textStellari, Franco, Ernest Y. Wu, Takashi Ando, Martin M. Frank, and Peilin Song. "Photon Emission Microscopy of HfO2 ReRAM Cells." In ISTFA 2021. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.istfa2021p0115.
Full textChuang, Ricky W., Kuan-Lun Fu, and Zhe-Ya Zheng. "The integrated vertically coupled resistive random-access memory (ReRAM)-based microdisk resonator and the relevant performance evaluation." In Integrated Optics: Devices, Materials, and Technologies XXIV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2020. http://dx.doi.org/10.1117/12.2545479.
Full textChuang, Ricky W., Ming-Cheng Huang, You-Kui Hu, and Zhe-Ya Zheng. "The impact of ultraviolet light on the switching characteristics of NiO resistive random-access memory (ReRAM) devices." In Integrated Optics: Devices, Materials, and Technologies XXIV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2020. http://dx.doi.org/10.1117/12.2545485.
Full textChuang, Ricky W., Zhe-Ya Zheng, Cheng-Liang Huang, and Bo-Liang Liu. "Vertically-waveguide-coupled BaTiO3-based microdisk optical resonator equipped with the functionality of resistive random-access memory (ReRAM)." In Integrated Optics: Devices, Materials, and Technologies XXV, edited by Sonia M. García-Blanco and Pavel Cheben. SPIE, 2021. http://dx.doi.org/10.1117/12.2579129.
Full textShima, Hisashi, and Hiro Akinaga. "In-situ nanoscale characterization of annealing effect on TiN/Ti/HfOx/TiN Structure for Resistive Random Access Memory (ReRAM)." In 2012 IEEE 12th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2012. http://dx.doi.org/10.1109/nano.2012.6322064.
Full textShiraishi, K., M. Y. Yang, S. Kato, et al. "Physics in Charge Injection Induced On-Off Switching Mechanism of Oxide-Based Resistive Random Access Memory (ReRAM) and Superlattice GeTe/Sb2Te3 Phase Change Memory (PCM)." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.a-7-1.
Full textYu-Tao Li, Hai-Ming Zhao, He Tian, et al. "Novel graphene-based resistive random access memory." In 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2016. http://dx.doi.org/10.1109/icsict.2016.7998952.
Full textSong, Guanghui, Kui Cai, Xingwei Zhong, Jiang Yu, and Jun Cheng. "Coding for Resistive Random-Access Memory Channels." In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, 2020. http://dx.doi.org/10.1109/globecom42002.2020.9322291.
Full textWu, Wenjuan, Xin Tong, Rong Zhao, Luping Shi, Hongxin Yang, and Yee-Chia Yeo. "Novel bipolar TaOx-based Resistive Random Access Memory." In 2011 11th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2011. http://dx.doi.org/10.1109/nvmts.2011.6137095.
Full textReports on the topic "Resistive random-access memory, ReRAM"
Chin, Matthew L., Matin Amani, Terrence P. O'Regan, A. G. Birdwell, and Madan Dubey. Effect of Atomic Layer Depositions (ALD)-Deposited Titanium Oxide (TiO2) Thickness on the Performance of Zr40Cu35Al15Ni10 (ZCAN)/TiO2/Indium (In)-Based Resistive Random Access Memory (RRAM) Structures. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada623815.
Full text