Academic literature on the topic 'Response time of probes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Response time of probes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Response time of probes"
Xie, H. Y., and D. Geldart. "The response time of pressure probes." Powder Technology 90, no. 2 (February 1997): 149–51. http://dx.doi.org/10.1016/s0032-5910(96)03218-4.
Full textHayman, Matthew, Katie J. McMenamin, and Jørgen B. Jensen. "Response Time Characteristics of the Fast-2D Optical Array Probe Detector Board." Journal of Atmospheric and Oceanic Technology 33, no. 12 (December 2016): 2569–83. http://dx.doi.org/10.1175/jtech-d-16-0062.1.
Full textBednarik, J. A., and C. N. May. "Evaluation of a transit-time system for the chronic measurement of blood flow in conscious sheep." Journal of Applied Physiology 78, no. 2 (February 1, 1995): 524–30. http://dx.doi.org/10.1152/jappl.1995.78.2.524.
Full textCheng, Zhao, Lei Zheng, Fei Liang, Hao He, Hao Xu, and Long Pang. "Rhodamine probes for Fe3+: theoretical calculation for specific recognition and instant fluorescent bioimaging." Future Medicinal Chemistry 11, no. 15 (August 2019): 1859–69. http://dx.doi.org/10.4155/fmc-2019-0077.
Full textHumm, H. J., C. R. Gossweiler, and G. Gyarmathy. "On Fast-Response Probes: Part 2—Aerodynamic Probe Design Studies." Journal of Turbomachinery 117, no. 4 (October 1, 1995): 618–24. http://dx.doi.org/10.1115/1.2836580.
Full textKupferschmied, Peter, Pascal Köppel, William Gizzi, Christian Roduner, and Georg Gyarmathy. "Time-resolved flow measurements with fast-response aerodynamic probes in turbomachines." Measurement Science and Technology 11, no. 7 (June 16, 2000): 1036–54. http://dx.doi.org/10.1088/0957-0233/11/7/318.
Full textFasano, Prof Antonio. "To the Editor— Importance of response time of esophageal thermal probes." Heart Rhythm 14, no. 1 (January 2017): e2. http://dx.doi.org/10.1016/j.hrthm.2016.09.029.
Full textZhou, Tao, Guosong Hong, Tian-Ming Fu, Xiao Yang, Thomas G. Schuhmann, Robert D. Viveros, and Charles M. Lieber. "Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain." Proceedings of the National Academy of Sciences 114, no. 23 (May 22, 2017): 5894–99. http://dx.doi.org/10.1073/pnas.1705509114.
Full textAinsworth, R. W., J. L. Allen, and J. J. M. Batt. "The Development of Fast Response Aerodynamic Probes for Flow Measurements in Turbomachinery." Journal of Turbomachinery 117, no. 4 (October 1, 1995): 625–34. http://dx.doi.org/10.1115/1.2836581.
Full textGianni, Carola, and Andrea Natale. "Reply to the Editor—Importance of response time of esophageal thermal probes." Heart Rhythm 14, no. 1 (January 2017): e2. http://dx.doi.org/10.1016/j.hrthm.2016.09.030.
Full textDissertations / Theses on the topic "Response time of probes"
Brouckaert, Jean-François M. "Development of fast response aerodynamic probes for time-resolved measurements in turbomachines." Doctoral thesis, Universite Libre de Bruxelles, 2002. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211406.
Full textVikram, Deepti S. "Development of particulate-based EPR oximetry for regional, temporal, and rapid measurements in tissue." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1216337271.
Full textGarcía, Villoria Alberto. "Exact and non-exact procedures for solving the response time variability problem (RTVP)." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/5961.
Full textEn el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario.
Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes.
El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes.
El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos.
Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA).
When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem.
In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource.
This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent.
The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP.
The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters.
To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed.
Pounders, Justin Michael. "A coarse-mesh transport method for time-dependent reactor problems." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/39586.
Full textChristoforou, Zoi. "Incidence occurrence and response on urban freeways." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00626573.
Full textŠafránek, Dominik. "Gaussian quantum metrology and space-time probes." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37124/.
Full textBai, Yanhong. "Time resolved multiphoton excited fluorescence probes in model membranes." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248737.
Full textRuss, Ricardo. "Service Level Achievments - Test Data for Optimal Service Selection." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-50538.
Full textAhmed, Eman. "PIEZOELECTRIC PROBES AND THEIR CAPACITY TO MONITOR TIME VARYING VISCOSITY." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2865.
Full textLiu, Binzhang M. S. "Characterizing Web Response Time." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36741.
Full textMaster of Science
Books on the topic "Response time of probes"
Dutta, Soumitra. Real time planning to minimize response time in static and dynamic worlds. Fontainebleau: INSEAD, 1992.
Find full textO'Connor, Kevin M. Geomeasurements by pulsing TDR cables and probes. Boca Raton: CRC Press, 1999.
Find full textPotter, Simon M. Nonlinear impulse response functions. [New York, N.Y.]: Federal Reserve Bank of New York, 1999.
Find full textG, Dabija Vlad, ed. Planning for real time event response management. Upper Saddle River, NJ: Prentice Hall PTR, 2000.
Find full textSchnipke, Deborah L. Representing response-time information in item banks. Newtown, PA: Law School Admission Council, 1999.
Find full textGoldring, Judith. Quick response therapy: A time-limited treatment approach. Northvale, N.J: Jason Aronson, 1997.
Find full textJohnson, M. L. Ampoule failure sensor time response testing: Experiment 1. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Find full textJ, Parsons Leonard, and Schultz Randall L, eds. Market response models: Econometric and time series analysis. 2nd ed. Boston: Kluwer Academic Publishers, 2001.
Find full textJ, Parsons Leonard, and Schultz Randall L, eds. Market response models: Econometric and time series analysis. Boston: Kluwer Academic Publishers, 1990.
Find full textHanssens, Dominique M., Leonard J. Parsons, and Randall L. Schultz. Market Response Models: Econometric and Time Series Analysis. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1073-7.
Full textBook chapters on the topic "Response time of probes"
Caroni, Elpidio, Renzo Rosso, and Franco Siccardi. "Nonlinearity and Time-variance of the Hydrologic Response of a Small Mountain Creek." In Scale Problems in Hydrology, 19–37. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4678-1_2.
Full textTosi, M. P., M. L. Chiofalo, A. Minguzzi, and R. Nifosì. "Current-Density Functional Theory of Time-Dependent Linear Response in Quantal Fluids: Recent Progress." In New Approaches to Problems in Liquid State Theory, 491–502. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4564-0_28.
Full textPaetow, Jürgen. "The Effect of Time Response of Force Transducers on Their Transfer Properties in Force Comparisons." In Mechanical Problems in Measuring Force and Mass, 247–55. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4414-5_29.
Full textWeik, Martin H. "response time." In Computer Science and Communications Dictionary, 1483. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_16255.
Full textVerhaeghen, Paul. "Response Time." In Encyclopedia of Geropsychology, 1–9. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-080-3_211-1.
Full textKao, Ming-Yang. "Response Time." In Encyclopedia of Algorithms, 777. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-30162-4_343.
Full textLiu, Tianshu, John P. Sullivan, Keisuke Asai, Christian Klein, and Yasuhiro Egami. "Time Response." In Experimental Fluid Mechanics, 163–97. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68056-5_7.
Full textKeller, U. "Ultrashort Time Optics: An Overview." In Photons and Local Probes, 295–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0423-4_26.
Full textFox, Jean-Paul. "Response Time Item Response Models." In Bayesian Item Response Modeling, 227–54. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0742-4_8.
Full textHorowitz, C. J. "The Relativistic Nuclear Response and Vacuum Polarization." In Spin Observables of Nuclear Probes, 269–83. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0769-3_24.
Full textConference papers on the topic "Response time of probes"
Vogt-Ardatjew, Robert, Ramiro Serra, L. Gregory Hiltz, and Frank Leferink. "Response time of electromagnetic field strength probes." In 2013 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2013. http://dx.doi.org/10.1109/apemc.2013.7360654.
Full textHumm, Hans J., Christoph R. Gossweiler, and George Gyarmathy. "On Fast-Response Probes: Part 2 — Aerodynamic Probe Design Studies." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-027.
Full textGrassi, Flavia, Giordano Spadacini, and Sergio A. Pignari. "Time-domain response of bulk current injection probes to impulsive stress waveforms." In 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256274.
Full textBoufidi, Elissavet, and Fabrizio Fontaneto. "The Dynamic Calibration Uncertainty of Fast Response Pressure Probes." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14680.
Full textFernández Oro, Jesús Manuel, Katia María Argüelles Díaz, María Rodríguez Lastra, and Mónica Galdo Vega. "Statistical Procedure to Obtain Accurate Time-Resolved Measurements in Turbomachinery Environments Using Fast-Response Probes." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72445.
Full textGeorgakis, C., I. Bennett, and P. C. Ivey. "Fast Response Probes Measuring Unsteady Flows in High-Speed Research Compressors." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38160.
Full textAgnew, B., R. L. Elder, and M. Terrel. "An Investigation of the Response of Temperature Sensing Probes to an Unsteady Flow Field." In ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-223.
Full textMohammed, H., H. Salleh, and M. Z. Yusoff. "Calibration of Rugged, Renewable and Fast Response Temperature Probes in a Hypersonic Flow Facility." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10925.
Full textKirilina, Svetlana I., Rinat K. Kusainov, Vladimir K. Makukha, Renat A. Mubarakshin, Elena S. Poltaratskaya, and Galina G. Sirota. "The time-response characteristics of gastrointestinal motility." In 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE, 2016. http://dx.doi.org/10.1109/apeie.2016.7802195.
Full textYang, Qing, Fei Yin, Tao Wang, Guilong Gao, Kai He, and Xin Yan. "GaAs material photorefractive response time measurement based on spectral probe." In Fourth International Conference on Photonics and Optical Engineering, edited by Jiangbo She. SPIE, 2021. http://dx.doi.org/10.1117/12.2586950.
Full textReports on the topic "Response time of probes"
Beall, Jeffrey, Margaret Brown-Sica, and Nina McHale. Next-generation library catalogs and the problem of slow response time. Library and Information Technology Association, 2010. http://dx.doi.org/10.25261/ir00000004.
Full textPandey, Ravindra. Fundamental Understanding of Probe-Target Molecular Interactions and Electronic Response for Nanoarchitecture-Based Real-Time Chemical and Biological Detection System. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada579617.
Full textBrenner, David J. 7th International Workshop on Microbeam Probes of Cellular Radiation Response. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/960221.
Full textGilbert, Stanley W., Thomas Cleary, Paul A. Reneke, Richard Peacock, and David Butry. Response Time Impact of Smoke Alarms. National Institute of Standards and Technology, September 2021. http://dx.doi.org/10.6028/nist.tn.2174.
Full textPinnick, Ronald G., J. D. Pendleton, and Gorden Videen. Response Characteristics of Active Scattering Aerosol Spectrometer Probes Made by Particle Measuring Systems. Fort Belvoir, VA: Defense Technical Information Center, March 2000. http://dx.doi.org/10.21236/ada376912.
Full textFuchs, Victor, and Joyce Jacobsen. Employee Response to Compulsory Short-Time Work. Cambridge, MA: National Bureau of Economic Research, December 1986. http://dx.doi.org/10.3386/w2089.
Full textBaum, D. W., R. M. Kuklo, J. E. Reaugh, and S. C. Simonson. Time-resolved diagnostics for concrete target response. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/238554.
Full textFuchs, Gregory. Time resolved electrical, optical, and thermal probes of topological spin textures in magnetic nanostructures. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1713205.
Full textBarrow, Lisa, Cecilia Elena Rouse, and Amanda McFarland. Who Has the Time? Community College Students’ Time-Use Response to Financial Incentives. Federal Reserve Bank of Chicago, 2020. http://dx.doi.org/10.21033/wp-2020-03.
Full textAndrea, Ciani, and Mau Karsten. When Time Matters: Eastern Europe's Response to Chinese Competition. Maastricht University, Graduate School of Business and Economics, 2020. http://dx.doi.org/10.26481/umagsb.20007.
Full text