Academic literature on the topic 'Resposta a danos e reparo no DNA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Resposta a danos e reparo no DNA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Resposta a danos e reparo no DNA"
Gaubeur, Matheus Acquesta, Elaine Imaeda de Moura, and Roger Chammas. "Marcadores radiométricos de dano ao DNA: possíveis alvos e estado atual." Revista de Medicina 94, no. 1 (March 5, 2015): 46. http://dx.doi.org/10.11606/issn.1679-9836.v94i1p46-56.
Full textMilano Hella, Rebeca, Renata Ernlund Macedo, and Fernando Bittencourt Luciano. "AVALIAÇÃO DO MECANISMO DE AÇÃO DO ISOTIOCIANATO DE ALILA CONTRA ESCHERICHIA COLI." Revista Acadêmica Ciência Animal 10, no. 4 (October 15, 2012): 395. http://dx.doi.org/10.7213/academica.7747.
Full textNepomuceno, Leandro, Jorge Ferreira, Vanessa Cruz, Gabriela Gabriel, and Eugênio Araújo. "MECANISMOS DE REPARO AOS DANOS NO DNA NOS PONTOS DE CHECAGEM DO CICLO CELULAR." Enciclopédia Biosfera 14, no. 25 (June 20, 2017): 881–902. http://dx.doi.org/10.18677/encibio_2017a71.
Full textLopes Ribeiro Junior, Howard, and Ronald Feitosa Pinheiro. "Expressão de Genes relacionados às Vias de Reparo de Danos em Fita Dupla no DNA em Pacientes com Síndrome Mielodisplásica." Revista Brasileira de Cancerologia 62, no. 2 (June 30, 2016): 159. http://dx.doi.org/10.32635/2176-9745.rbc.2016v62n2.355.
Full textPerez, Rodrigo Oliva, Angelita Habr‐Gama, Fernanda Koyama, Jeffersson Leandro Jimenez Restrepo, Guilherme Pagin São Julião, Bruna Borba Vailati, and Anamaria Aranha Camargo. "GENES DE REPARO DO DNA E RESPOSTA À QUIMIORRADIOTERAPIA NEOADJUVANTE NA NEOPLASIA DE RETO." Journal of Coloproctology 37 (October 2017): 6. http://dx.doi.org/10.1016/j.jcol.2017.09.311.
Full textLopes Ribeiro Junior, Howard, and Ronald Feitosa Pinheiro. "Estudo dos Genes Relacionados a Mecanismos de Reparo em Danos de DNA em Síndrome Mielodisplásica." Revista Brasileira de Cancerologia 59, no. 4 (December 31, 2013): 593. http://dx.doi.org/10.32635/2176-9745.rbc.2013v59n4.986.
Full textPontes, Hélder Antônio Rebelo, Maria Cássia Ferreira de Aguiar, Ricardo Alves de Mesquita, Flávia Sirotheua Corrêa Pontes, and João Batista da Silveira Júnior. "Imunoexpressão da proteína de reparo hMSH2 em queilite actínica e mucosa labial normal." Revista Brasileira de Cancerologia 51, no. 1 (March 31, 2005): 23–30. http://dx.doi.org/10.32635/2176-9745.rbc.2005v51n1.1989.
Full textAndrade-Lima, Leonardo Carmo de. "Resposta a danos no DNA após exposição à luz ultravioleta: apagando o fogo antes do incêndio celular." Revista da Biologia 14, no. 1 (June 2015): 6–16. http://dx.doi.org/10.7594/revbio.14.01.02.
Full textGermini, Demetrius, Fernando Luiz Affonso Fonseca, Leonardo Cardilli, Thérèse Rachel Teodoro, Celina Tizuko Fujiyama Oshima, and Jaques Waisberg. "RELAÇÃO DA EXPRESSÃO DOS GENES DE RESPOSTA INFLAMATÓRIA E DOS GENES DE REPARO DE DNA COM OS ASPECTOS ANATOMOPATOLÓGICOS DO CARCINOMA COLORRETAL." Journal of Coloproctology 38 (October 2018): 126. http://dx.doi.org/10.1016/j.jcol.2018.08.271.
Full textSisenando, Herbert Ary A. A. C. Nóbrega. "AVALIAÇÃO DO POTENCIAL DE MUTAGENICIDADE E TOXICIDADE DA LECTINA HIPOGLICEMIANTE DE FOLHA DE BAUHINIA MONANDRA (PATA-DE-VACA)A." Revista Baiana de Saúde Pública 33, no. 2 (August 23, 2012): 293. http://dx.doi.org/10.22278/2318-2660.2009.v33.n2.a213.
Full textDissertations / Theses on the topic "Resposta a danos e reparo no DNA"
Teixeira, Ana Claudia. "Polimorfismos dos Genes XRCC1 e XRCC3 e a Resposta aos Danos Induzidos no DNA pelo Etoposido em Pacientes com Câncer de Mama." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-29082013-103043/.
Full textIn spite of intensive studies and substantial improvements in the understanding of the risk factors and breast cancer (BC) susceptibility, this neoplasia remains as an important cause of death among women worldwide. Age, family history of cancer, early menarche, late menopause, the first pregnancy after the age of 30 years and nulliparity are BC risk factors. Furthermore genetic polymorphisms in repair genes like XRCC1 and XRCC3 could contribute to increase BC risk. The aims of the present study were to evaluate, by Micronucleus Test and Comet Assay, the basal damage and the cellular response to DNA damage induced by Etoposide, in vitro, in BC patients without chemotherapy treatment and in healthy women. Also establish the frequencies of polymorphisms of XRCC1 and XRCC3 genes in this sample and the association of these two polymorphisms with the susceptibility to BC. In the Micronucleus Test it was observed increased sensibility to DNA damage induced by Etoposide in patients group. Patients and healthy women exhibited the same repair capacity to DNA damage induced by Etoposide when evaluated by Comet Assay. Patients > 45 years old showed more sensibility to DNA damage induced by Etoposide (25 M) when were compared with patients 45 years old in Comet Assay. Tobacco habits contributed to increased sensibility to damage induced by Etoposide in Comet Assay in healthy women group when treated with Etoposide in 10 and 25 M. In the molecular analysis, the XRCC3 241Met allele was more frequent in patients group in both analysis (cytogenetic and molecular) suggesting a low repair capacity of DNA damage and consequently increase risk to BC. Non-smokers patients, carriers of XRCC3 241Met allele showed an increased risk to BC. The polymorphism Arg399Gln in XRCC1 gene was not associated with BC risk even if associated with risk factors like tobacco habit and family history of cancer.
Leandro, Giovana da Silva. "Alterações na Cinética de Reparo do DNA e nos Perfis de Expressão de Genes de Resposta ao Estresse em Linfócitos de Portadores da Doença de Alzheimer." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-26092011-113731/.
Full textAlzheimers disease (AD) is a progressive neurodegenerative disorder that causes a high impact on public health. Although oxidative stress has been associated with the aging process and the pathogenesis of neurodegenerative diseases (including AD), the literature is still scarce regarding the risk factors for the disease and the role of oxidative damage in the development of AD. The purpose of the present work was to study whether lymphocytes of AD patients display alterations in the expression levels of several genes related to stress responses, such as SOD1, TP53, ATM, ATR, FEN1, FANCG, CDKN1A, MTH1; and the genes ADAM10 and ADAM17 directly associated with the pathology. In addition, our objective was to evaluate the levels of DNA damage and repair kinetics in lymphocytes treated with hydrogen peroxide (H2O2). Blood samples were collected from AD patients (age between 65 and 80 years) and elderly individuals in order to analyze protein expression by Western blot (n=6) and transcript expression by quantitative real time PCR (n=7). The comet assay was used to investigate DNA damage and repair kinetics in lymphocytes of AD patients (n=8), elderly age-matched individuals (n=8), and young healthy individuals (n=5; age between 18 and 28 years). In order to accomplish that, lymphocytes were cultured for 47h, treated with H2O2 for 1h, and analyzed at different recovery times: 0, 0.5, 2, and 6h. The analysis of gene expression by real time qPCR showed that FANCG (implicated in cell cycle control and DNA repair) and CDKN1A (involved in the response to DNA damage stimulus) were both up-regulated in AD patients when compared to controls. In contrast, alteration in transcript profiles of ATM, ATR, FEN1, and MTH1 genes were not significantly different between groups of patients and controls. A small decrease in SOD1 protein levels was detected in AD patients; but, the proteins ADAM10 and ADAM17 expression levels was not different. Moreover, the expression of TP53 was increased in AD patients, while only low levels of TP53-phospho-Ser15 could be found; the latter is consistent with the fact that alterations in the expression levels of ATM and ATR were not observed. Regarding the analysis of DNA damage and repair kinetics, results showed significant differences between AD patients and controls, suggesting that the mechanisms involved in the oxidative DNA damage processing are different in the pathology of Alzheimers disease compared to the process of aging itself. Therefore, the results of the present study support our hypothesis that repair pathways may be compromised in AD. In addition, we showed that peripheral lymphocytes may reflect at least some alterations associated to the disease, encouraging further investigation to search for biomarkers present in these cells that might characterize AD.
Vilar, Juliana Brandstetter. "Mecanismos de reparo de DNA envolvidos com lesões induzidas por agente alquilante (Nimustina) em células humanas e sua associação com a resistência de gliomas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/42/42132/tde-24022015-105346/.
Full textThe chemoresistance of tumors is one of the most important obstacles that commonly lead to the failure of therapy. The main mechanisms that contribute to cellular resistance include efflux pumps; changes in the interaction between the drug and its target and changes in cellular responses, in particular an increased ability to repair induced DNA damages and defects in apoptotic pathways. The ability to repair DNA damage and evasion of apoptosis are of great importance, since most chemotherapy has its action based on the induction of cytotoxicity by the ability to generate DNA lesions. Thus, an important strategy for improving chemotherapy is the development of more selective mechanisms that circumvent tumor resistance approaches. In this work, through a study of genes and pathways involved in the repair, survival and damage signaling induced by nimustine (ACNU) - a cloroethylating agent commonly used in treatments of solid tumors - we aimed to identify target genes for a potentially adjuvant therapy. We demonstrated that glioma cells p53mt have less ability to repair ICLs induced by this drug then p53wt cells. Also, that the NHEJ (\'\'Non Homologous End Joining\'\') pathway is not the main route of repair of these lesions, but that the NER (\'\'Nucleotide Excision Repair\'\') pathway (or specifically the gene products XPA, XPC and XPF) is very important. Interestingly, in the absence of XPA, NHEJ takes place in the repair of those lesions, probably due to an increase in the number of DSBs and saturation of other repair pathways. Likewise, we found that DNA polimerase involved in TLS (\'\'Translesion Synthesis\'\') POLH (XPV) also participates in tolerance of such lesions. We also found evidence that TLS polimerases (specifically POLH and POLK) are overexpressed in gliomas samples and could play a role in the tumorigenesis and in the resistance observed in these tumor types. Finally, we performed gene silencing through RNAi teconology, which repress genes by eliminating the corresponding mRNA transcript, preventing protein synthesis. The target genes selected for silencing were XPC, XPF, POLH and POLK. The knockdown of XPC, XPF and POLH proved to significantly sensitize glioma cells, suggesting these proteins as important elements in the chemoresistance of gliomas and highlighting the inhibition of these molecules as an important strategy in the sensitization of gliomas to ACNU and probably to other chemotherapeutic agents with the same mechanisms of action.
Osaki, Juliana Harumi. "O papel de RhoA e Rac1 GTPases nas respostas celulares após danos no DNA induzidos por radiação ionizante gama." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-22092015-075415/.
Full textThe mechanism by which a cell responds to DNA damage is extremely important. This occurs by a quick activation of the DNA damage repair machinery, which consists of an intricate protein signaling network culminating in DNA repair. But if the damages are irreparable occurs there is activation of cell death mechanisms. RhoA and Rac1 belong to family of small Rho GTPases, signaling proteins that act as molecular switches cycling between the active state (GTP-bound) and inactive state (GDP-bound). Members of this family are implicated in the control of diverse cellular process such as cytoskeletal remodeling, migration, adhesion, endocytosis, cell cycle progression, and oncogenesis. However, despite Rho proteins are involved in a broad spectrum of biological activities, there is just a few information about their roles in the maintenance of genomic integrity, that is, when the cells are subjected to some kinf of genotoxic agent. To investigate the involvement of the GTPases RhoA and Rac1 in cellular responses to gamma radiation, we generated from human cervix carcinoma cells - HeLa, clonal sublines of RhoA and Rac1 mutants, exogenous and stably expressing the constitutively active RhoA (HeLa-RhoA V14), the dominant negative RhoA (HeLa-RhoA N19), the constitutively active Rac1 (HeLa-Rac1 V12) and the dominant negative Rac1 (HeLa-Rac1 N17). After all these cell lines have been exposed to different doses of gamma radiation, we found that both GTPases, RhoA and Rac1, are activated in response to the radiation effects. Furthermore, the modulation of two enzymes activity, by using the mutant clones, led to a change in cellular responses to the DNA damage, as the reduction in the capacity of repairing DNA single and double strand breaksr. On the other hand, the deficiency of RhoA or Rac1 GTPase led to a reduction of Chk1 and Chk2 activation, or on the phosphorylation of histone H2AX, respectively, hindering the mechanisms of DNA damage detection and arresting cells in the G1/S and/or G2/M checkpoints of cell cycle. These factors significantly contributed to the reduction of cell proliferation and survival, leading cells to death. Finally, cellular assays of DNA damage repair of exogenous DNA by Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ), demonstrated that RhoA inhibition significantly reduced the repair efficiency of both pathways. Thus, this work demonstrates and reinforces the existence of other biological functions of small GTPases RhoA and Rac1 in HeLa cells, by regulating cellular responses to DNA damage induced by exposure to gamma radiation, modulating the survival, proliferation and indirectly modulating the response to DNA damage repair pathway through the Homologous Recombination and Non-Homologous Recombination
Lerner, Leticia Koch. "Papel das proteínas XPD e DNA polimerase eta nas respostas de células humanas a danos no genoma." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5155/tde-20102014-103732/.
Full textThe Nucleotide Excision Repair (NER) pathway is responsible for the repair of UV photoproducts and other bulky lesions that block both replication and transcription. Patients with the rare recessive disorders Xeroderma Pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne Syndrome (CS) carry mutations in one of the 11 NER genes, linked to repair and basal transcription. Mutations in XPD lead to different phenotypes: XP, TTD, XP/CS or COFS (Cerebro-Oculo-Facio-Skeletal Syndrome), a rare form of CS. XP patients have high incidence of skin cancer, which does not occur in TTD or CS patients, although ther may present neurodegeneration, while all CS and TTD patients have neurodevelopmental symptoms linked to dysmielynation. The pathology of these neurological diseases is probably associated with deficient repair of DNA lesions in nervous cells, generated by endogenous processes. Many groups including ours have demonstrated the involvement of NER in the repair of these lesions, previously thought to be exclusively repaired by Base Excision Repair. In this work we show high sensitivity of both primary and transformed XP-D, XP-D/CS and TTD human fibroblasts in response to oxidative stress generated by photoactivated methylene blue, with prolonged cell cycle arrest and DNA damage signaling. The complementation of the three different cell lines with the XPD/ERCC2 gene was able to restore cell survival. We detected important differences in repair capacity/transcription resumption after damage generated by oxidative stress in plasmid DNA, besides the activation of different cell death pathways: XP-D cells have higher repair capacity and die by apoptosis, while XP-D/CS and TTD cells have little repair capacity and activate more than one death pathway (apoptosis and necrosis). We believe these differences can be related to the patients\' phenotypes. Mutations in DNA polymerase n coding gene, POLH, are associated with the variant form of XP (XP-V). Pol n is a translesion synthesis (TLS) polymerase specialized in the TLS past CPD photoproducts, besides other lesions like oxidized bases, and in other processes like somatic hypermutation and DNA replication in structured regions. In this work we show XP-V human fibroblasts are sensitive to oxidative stress. We detected an induction of pol n after genotoxic stress in primary cells, associated with increased ability to deal with the stalled replication fork, and consequently to DNA replication restart and cell survival. In addition, we detected a difference in genomic stability in immunoglobulin genes in aged XP-V patients in comparison to both young patients and age-matched controls, showing the absence of this polymerase may be linked to increased genomic instability in these genes
Montaldi, Ana Paula de Lima. "Influência do Gene APE1/REF-1 nas Respostas Celulares das Linhagens de Glioblastoma ao Quimioterápico Temozolomida." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-24102013-103232/.
Full textAPE1 (Apurinic/Apyrimidinic endonuclease 1/ Redox Factor-1 - APE1/REF-1) protein is a multifunctional enzyme whose expression is often increased in gliomas. Besides presenting activity in base excision repair (BER), APE1 also acts as a reduction factor, maintaining transcription factors (TFs) in an active reduced state. The BER pathway has been implicated as a possible factor of resistance to therapies based on the use of alkylating agents such as temozolomide (TMZ). In the present study, we have been using a strategy of small interference RNA (siRNA) to down-regulate the APE1 gene under conditions of treatment with TMZ in T98G (resistant to TMZ) and U87MG (sensitive to TMZ), glioblastoma (GBM), in order to determine the effects of APE1 gene silencing on cellular responses to this drug, evaluated by several assays, as well as the effects on the transcriptional expression of target genes of TFs regulated by APE1. APE1 silencing and TMZ treatment was effective to reduce the cell proliferation and clonogenic capacity of T98G cells, in addition to interfering in the cell cycle progression (S-phase arrest). These effects were accompanied by induction of DNA damage and phosphorylation of H2AX (H2AX), which may explain the decrease in cell survival. The same effect was not observed in silenced U87MG and TMZ-treated cells, being observed a predominance of the effects caused by TMZ itself, except for a slight induction of DNA damage and H2AX. Additionally, in silenced T98G and TMZ-treated cells, there was a moderate induction of apoptosis, as observed over time (1 to 10 days), with a slight induction of caspase-3 (on day 5); for those cells, we also observed autophagic induction (3.8 fold) at day 5. However, the induction of apoptosis and autophagy in U87MG cells was very low, suggesting that other mechanisms of cell death might be involved in the elimination of GBM cells under TMZ treatment. APE1 silencing caused a marked reduction on the invasiveness of T98G cells, similarly to that observed in TMZ treated cells, while the combination (APE1 silencing and drug treatment) led to an additive effect. For U87MG, the treatment combination was effective in reducing the proportion of invasive cells, in spite of an absence of any effect produced by each isolated condition tested. Regarding to the expression profile of target genes of TFs regulated by the APE1 redox activity, it was observed that COX2 and VEGF genes, targets of FTs NFB and HIF-1, were down-regulated in T98G while VEGF gene showed induced in U87MG cells; however, such alterations in the transcriptional expression pattern were observed only in response to TMZ treatment, independently of APE1 gene silencing, indicating no change in the APE1 redox activity, possibly due to the presence of APE1 remaining proteins inside cells. In addition, NFBp65(ser563) protein expression was increased in both cell lines (silenced and treated with TMZ), probably due to the reduced cell proliferation rates. In general, the present results show that the strategy of APE1 gene knockdown was potentially viable, supporting the BER contribution of the mechanism of TMZ resistance, since under the conditions tested, there was a sensitization of GBM cells. However, this effect was restricted to the resistant cell line (T98G cells). Thus, it should be considered the genetic characteristics of each GBM cell line, since these are crucial to the cellular responses to the conditions tested in the present work.
Silva, Verônica Santana da. "Influência do Inibidor de RAD51 (RI-1) em Linhagens de Glioblastoma, M059J e M059K, Irradiadas com Raios-X." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/17/17135/tde-30102014-125051/.
Full textGlioblastoma (GBM) is an extremely aggressive and resistant tumor to conventional treatments. The agents used in chemotherapy and radiotherapy are inducers of DNA damage, since they induce single strand breaks (SSBs) and doublestrand breaks (DSBs), which are lethal to cells, but when efficiently repaired by tumor cells make them resistant to antitumoral agents. The main repair pathways for DSBs are the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Proteins participating in these processes have been studied as potential molecular targets in cancer therapy. Thus, the strategy employed in this work involved the inhibition of HR repair pathway in cells already committed to the NHEJ pathway, aiming to sensitize irradiated GBM cells. An inhibitor of RAD51 (one of the major HR proteins) was used: 3-chloro-1-(3,4-dichlorophenyl) -4 morpholinylo-1Hpyrrole- 2,5-dione, known as RI-1 (Calbiochem); this compound was tested in GBM cells, M059K and M059J (proficient and deficient for the DNA-PK, respectively) irradiated with X-rays. Various assays were performed to test the inhibitory property of RI-1 in irradiated cells and the combination of the inhibitor with X-irradiation, compared with the untreated control. The results of clonogenic survival showed that 40 M of RI-1 inhibitor exerted a higher inhibitory effect on the ability of cells to divide and form colonies. The RI-1 induced changes in cell cycle kinetics predominantly in the wild-type M059K, at 24 and 72 h. Although M059J did not show significant changes in cell cycle kinetics, these cells showed sensitivity to X-irradiation, as shown by the kinetics of DSB repair (gamma-H2AX foci), which was slower compared to M059K, demonstrating the commitment of the NHEJ repair in M059J (mutant for DNA-PK). The expression of LIG3, PARP-1 and XRCC1 proteins were analyzed at 15 min. and 24 h after irradiation. In the presence of the inhibitor RI-1, LIG 3 expression was increased in M059K cells (15 min. and 24 h) compared to the control group. M059J cells showed a high expression of XRCC1 and PARP-1 only at 15 min., compared to the control. These data indicated that a possible repair of DSBs involving these proteins may have been activated in the first minutes after DNA damage induction. The overall results of this study suggest that RI-1 inhibitor was efficient to influence cellular responses in cells committed to the NHEJ repair, i.e. M059J cell line, leading to the hypothesis that alternative repair pathways may be possibly involved in the resistance of tumor cells.
Oliveira, Ana Helena de Sales. "An?lise das mudan?as no perfil prot?ico durante o estresse oxidativo in vivo e atua??o da MutY-Glicosilase em respostas celulares." Universidade Federal do Rio Grande do Norte, 2009. http://repositorio.ufrn.br:8080/jspui/handle/123456789/16771.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Esp?cies reativas de oxig?nio (EROs) s?o produtos do metabolismo celular capazes de reagir com biomol?culas, como prote?nas, lip?deos e ?cido nucl?ico. Essas rea??es podem causar modifica??es delet?rias para a c?lula. Fotossensibilizadores como o azul de metileno (MB), s?o capazes de produzir EROs, como o oxig?nio singlete (1O2), uma das formas mais reativas do oxig?nio molecular. O 1O2 ? capaz de oxidar guaninas, gerando les?es no DNA, como 7,8-dihydro-8-oxoguanine (8-oxoG), o mais frequente produto da oxida??o, que durante a replica??o pode emparelhar com adenina levando ? muta??es. Foi de interesse desse estudo, caracterizar a citotoxicidade, o potencial mutag?nico e o padr?o de express?o prot?ica, durante o estresse oxidativo induzido pelo MB, usando como modelo cepas de Escherichia coli proficiente em reparo e deficientes em MutY-Glicosilase, uma enzima de reparo envolvida na corre??o de pares 8-oxoG:Adenina. Essas cepas foram tratadas com MB em presen?a ou aus?ncia de luz. O crescimento, sobreviv?ncia, a taxa de mutag?nese e padr?o de s?ntese prot?ica, foram analisados. O tratamento afetou o crescimento bacteriano, induzindo morte celular, mutag?nese, e mudan?as no padr?o de s?ntese prot?ica em ambas as cepas. Entretanto a cepa deficiente em MutY mostrou uma maior sensibilidade em rela??o a cepa proficiente. Adicionalmente, a cepa deficiente em MutY apresentou um padr?o de express?o prot?ica diferenciado quando comparado com a cepa proficiente. Esses resultados sugerem o envolvimento da MutY na corre??o de les?es de DNA n?o caracterizadas e que a aus?ncia de MutY induz altera??es no padr?o de express?o prot?ica
Ribeiro, Júnior Howard Lopes. "Expressão de genes relacionados às vias de reparo de danos em fita dupla no DNA em pacientes com síndrome mielodisplásica." reponame:Repositório Institucional da UFC, 2016. http://www.repositorio.ufc.br/handle/riufc/17728.
Full textSubmitted by Erika Fernandes (erikaleitefernandes@gmail.com) on 2016-06-16T12:19:55Z No. of bitstreams: 1 2016_tese_hlrjunior.pdf: 3941169 bytes, checksum: da8ed2c501a8d8f79b2699dd21d36ce6 (MD5)
Approved for entry into archive by Erika Fernandes (erikaleitefernandes@gmail.com) on 2016-06-16T12:20:35Z (GMT) No. of bitstreams: 1 2016_tese_hlrjunior.pdf: 3941169 bytes, checksum: da8ed2c501a8d8f79b2699dd21d36ce6 (MD5)
Made available in DSpace on 2016-06-16T12:20:35Z (GMT). No. of bitstreams: 1 2016_tese_hlrjunior.pdf: 3941169 bytes, checksum: da8ed2c501a8d8f79b2699dd21d36ce6 (MD5) Previous issue date: 2016-06-09
The myelodysplastic syndrome (MDS) is a group of clonal hematopoietic stem cell disorders characterized by cytopenia (s) peripheral (s), dysplasia of one or more myeloid cell lineages and increased risk of acute myeloid leukemia development. MDS is considered a disease of elderly people, since approximately 80% of patients are over 60 years of diagnosis. The causes of MDS are known only in 15% of cases. With respect to environmental factors such as MDS triggers may be included the use of prior chemotherapy, especially alkylating agents and purine analogs, radiation therapy and smoking. The pathogenesis of MDS involves DNA damage in hematopoietic stem cells affected probably by double-stranded damage (DSB) in the DNA and the case of joints by non-homologous ends (NHEJ) and homologous recombination main repair mechanisms necessary to ensure stability genomics of stem cells. This cohort study aimed to assess the level of expression of mRNA of the genes active in the repair mechanism of double-stranded DNA damage (BRCA1, BRCA2 and RAD51, operating in HR mechanism, the XRCC5, XRCC6 and LIG4 related mechanism for NHEJ and, finally, the ATM) linking the molecular findings with their polymorphic variants (rs4793191, rs9567623, rs1801320, rs3835, rs2267437, rs1805388 and rs228593, respectively) and with clinical and socio-demographic of patients of Myelodysplastic Syndromes. This genotyping analysis was based on qPCR methodology, including bone marrow samples from 83 patients with MDS and 10 bone marrow samples from healthy elderly volunteers. The MDS patients were diagnosed according to the criteria proposed by the World Health Organization and stratified according to the criteria established by prognósitoc Score Index International Prognostic revised. In this study we observed that: 1. the ATM, BRCA1, BRCA2 and RAD51 genes were significantly associated with cellularity variable bone marrow of patients with MDS; 2. the XRCC5 gene introduced is associated with the presence of ringed sideroblasts on the analysis of the bone marrow of patients with MDS; 3. The BRCA2, RAD51 and LIG4 genes correspond to potential markers of poor prognosis and progression in clonal cases of MDS de novo of high level, being associated with decreased survival and a high chance of progression to AML; 4. the XRCC6 gene is a negative prognostic factor for patients at low risk, it is evident that the decrease in expression of this gene is able to identify an unfavorable subgroup within the low-risk patients who have higher dependence transfusion and increased genomic instability and finally, 5 the results of analysis of influence of functional polymorphisms in MDS emphasize the importance of polymorphism rs228593, rs2267437 and rs1805388 in differentiating the expression levels of ATM, XRCC6 and LIG4 genes, respectively, compared to patients with clinical variables MDS representing novel targets for the study of the pathogenesis of this disease. We demonstrate that the DSBs repair related genes are also related to the pathogenesis of MDS. These results support the importance of the expression levels of ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6 and LIG4 genes, as well as the frequency of the respective polymorphisms (rs228593, rs4793191, rs9567623, rs1801320, rs3835, rs2267437 and rs1805388) in the maintenance genomic stability of hematopoietic stem cells promoting a better understanding of the etiology, diagnosis and prognostic stratification and the process of clinical development of Myelodysplastic Syndromes.
Síndrome Mielodisplásica (SMD) é um grupo de doenças clonais das células progenitoras hematopoiéticas, caracterizadas por citopenia(s) periférica(s), displasia de uma ou mais linhagens celulares mielóides e aumento do risco de desenvolvimento de leucemia mielóide aguda. A SMD é considerada uma doença de pessoas idosas, pois aproximadamente 80% dos pacientes possuem mais de 60 anos ao diagnóstico. As causas da SMD são conhecidas em apenas 15% dos casos. Em relação aos fatores ambientais como desencadeadores da SMD, podem ser incluídos o uso de quimioterapia prévia, especialmente de agentes alquilantes e análogos da purina, radioterapia e tabagismo. A patogênese da SMD envolve danos no DNA nas células tronco hematopoéticas acometido provavelmente pelos danos de fita dupla (DSB) no DNA tendo o processo de junções por extremidades não-homólogas (JENH) e recombinação homóloga como principais mecanismos de reparo necessários para garantir a estabilidade genômica das células-tronco. Este estudo de coorte propôs avaliar o nível de expressão do mRNA dos genes atuantes no mecanismo de reparo em danos de fita dupla no DNA (BRCA1, BRCA2 e RAD51, atuantes no mecanismo de Recombinação Homóloga; o XRCC5, XRCC6 e LIG4 relacionados ao mecanismo de Junções por Extremidades não-Homólogas e, por fim, o ATM) associando os achados moleculares com suas variantes polimórficas (rs4793191, rs9567623, rs1801320, rs3835, rs2267437, rs1805388 e rs228593, respectivamente) e com variáveis clínicas e sócio-demográficas de pacientes portadores de Síndrome Mielodisplásica. Esta análise de genotipagem baseou-se na metodologia de qPCR, entre amostras de medula óssea de 83 pacientes com SMD e 10 amostras de medula óssea de idosos voluntários sadios. Os pacientes com SMD foram diagnosticados de acordo com os critérios propostos pela Organização Mundial de Saúde e estratificados de acordo com os critérios prognósitoc estabelecidos pelo Índice de Score Prognóstico Internacional revisado. Com este estudo foi possível identificar que: 1. os genes ATM, BRCA1, BRCA2 e RAD51 foram associados significativamente com a variável de celularidade da medula óssea dos pacientes com SMD; 2. o gene XRCC5 apresentou-se associado com a presença de sideroblastos em anel quanto à análise da medula óssea dos pacientes com SMD; 3. os genes BRCA2, RAD51 e LIG4 correspondem a possíveis marcadores de pior prognóstico e de progressão clonal em casos de SMD de novo de alto grau, estando associados a uma diminuição da sobrevida e a uma elevada chance de evolução para LMA; 4. o gene XRCC6 é um fator de prognóstico desfavorável para os pacientes de baixo risco, sendo evidente que a diminuição da expressão deste gene é capaz de identificar um subgrupo desfavorável dentro dos pacientes de baixo risco que apresentariam maior dependência transfusional e maior instabilidade genômica e, por fim, 5. os resultados das análises de influência dos polimorfismos funcionais na SMD realçam a importância dos polimorfismos rs228593, rs2267437 e rs1805388 na diferenciação dos níveis de expressão dos genes ATM, XRCC6 e LIG4, respectivamente, frente às variáveis clínicas de pacientes com SMD, representando novos alvos para o estudo da patogênese desta doença. Demonstramos que os genes relacionados à reparação das DSBs são também relacionados a patogênese da SMD. Estes resultados suportam a importância dos níveis de expressão dos genes ATM, BRCA1, BRCA2, RAD51, XRCC5, XRCC6 e LIG4, como também da frequência dos seus respectivos polimorfismos (rs228593, rs4793191, rs9567623, rs1801320, rs3835, rs2267437 e rs1805388) na manutenção da estabilidade genômica das células tronco hematopoiéticas promovendo um melhor entendimento da etiologia, estratificação diagnóstica e prognóstica e do processo de evolução clínica da Síndrome Mielodisplásica.
JÃnior, Howard Lopes Ribeiro. "Estudo dos genes relacionados a mecanismos de reparo em danos de DNA em sÃndrome mielodisplÃsica." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14115.
Full textA SÃndrome MielodisplÃsica (SMD) à um grupo de doenÃas clonais das cÃlulas progenitoras hematopoiÃticas, caracterizadas por citopenia(s) perifÃrica(s), displasia de uma ou mais linhagens celulares mielÃides e aumento do risco de desenvolvimento de leucemia mielÃide aguda. A SMD à considerada uma doenÃa de pessoas idosas, pois aproximadamente 80% dos pacientes possuem mais de 60 anos ao diagnÃstico. SÃo raras na infÃncia, sendo observadas em menos de 5% das neoplasias hematolÃgicas que acometem pacientes com menos de 14 anos de idade. A patogÃnese da SMD envolve danos no DNA nas cÃlulas tronco hematopoÃticas acometido provavelmente pelos danos de fita dupla (DSB) no DNA tendo o processo de junÃÃes por extremidades nÃo-homÃlogas (JENH) e recombinaÃÃo homÃloga como principais mecanismos de reparo necessÃrios para garantir a estabilidade genÃmica das cÃlulas-tronco. Este estudo de coorte propÃs avaliar a associaÃÃo dos polimorfismos BRCA1 rs4793191, BRCA2 rs9567623 e RAD51 rs1801320, atuantes no mecanismo de RecombinaÃÃo HomÃloga; o XRCC5 rs3835, XRCC6 rs2267437 e LIG4 rs1805388 relacionados ao mecanismo de JunÃÃes por Extremidades nÃo-HomÃlogas e, por fim, o ATM rs228593, um sensor molecular ao dano em DSB. Esta anÃlise de genotipagem baseou-se na metodologia de PCR-RFLP, entre amostras de medula Ãssea de 60 pacientes com SMD, oriundos do Hospital UniversitÃrio Walter Cantidio, e 82 amostras de sangue perifÃrico de idosos voluntÃrios sadios. Os pacientes com SMD foram diagnosticados de acordo com os critÃrios propostos pela OrganizaÃÃo Mundial de SaÃde. Os genÃtipos dos polimorfismos estudados encontravam-se em equilÃbrio de Hardy-Weinberg (p>0,05), exceto o polimorfismo rs1805388 para o gene LIG4. Nossos resultados apresentaram para o polimorfismo rs228593 do gene ATM uma associaÃÃo do genÃtipo heterozigoto A/G (p=0,008, OR 0,225, IC 0,075-0,680) com diminuiÃÃo de risco para SMD adicionada com associaÃÃo do genÃtipo A/G com as variÃveis clÃnicas de citopenia (p=0,032, OR 5,250, IC 1,151-23,937), na faixa de 0-1 citopenias no sangue perifÃrico, e com prognÃstico favorÃvel para o Ãndice prognÃstico do IPSS (p<0,001, OR 21,95, IC 29,791-16,185). Para o polimorfismo rs2267437 para o gene XRCC6 relacionamos o genÃtipo mutante C/G e C/G+G/G com a variÃvel celularidade na medula Ãssea na faixa de normocelular + hipercelular (p=0,023, OR 5,556, IC 1,270-24,239). Para o polimorfismo rs3835 do gene XRCC5 identificamos que o genÃtipo A/G està altamente associado com a diminuiÃÃo de risco para SMD (p<0,001, OR 0,100, IC 0,035-0,289). Para o polimorfismo rs1801320 do gene RAD51, associamos o genÃtipo heterozigoto mutante G/C com diminuiÃÃo de risco para SMD (p=0,053, OR 0,453, IC 0,203-1,009). Adicionalmente, associamos o genÃtipo selvagem G/G com a variÃvel idade (p<0,001, OR 24,521, IC 64,033-93,907), na faixa de maior que 60 anos de idade, e com a variÃvel citopenia (0-1 citopenias) (p<0,001, OR 16,099, IC 31,299-82,808). NÃo obtivemos associaÃÃo significante entre os polimorfismos rs 4793191, rs9567623 e rs1805388 para os genes BRCA1, BRCA2 e LIG4, respectivamente, e as variÃveis clÃnicas para os pacientes com SMD. Neste estudo demonstramos que os genes relacionados a DSB sÃo tambÃm relacionados à patogÃnese da SMD. Estes resultados suportam a importÃncia dos polimorfismos rs228593, rs3835, rs2267437 e rs1801320 para os genes ATM, XRCC5, XRCC6 e o RAD51, respectivamente, na manutenÃÃo da estabilidade genÃmica promovendo um melhor entendimento da gÃnese e etiologia da SÃndrome MielodisplÃsica.
Myelodysplastic Syndrome (MDS) is a group of diseases of clonal hematopoietic progenitor cells, characterized by cytopenia (s) peripheral (s), dysplasia of one or more myeloid cell lineages and increased risk for development of acute myeloid leukemia. MDS is considered a disease of older people, because approximately 80% of patients have more than 60 years at diagnosis. Are rare in children, being observed in less than 5% of hematologic malignancies that affect patients under 14 years of age. The pathogenesis of MDS involves DNA damage in hematopoietic stem cells probably affected by Double-Strand Break (DSB) in the process of Non-homologous end join (NHEJ) and homologous recombination (HR) repair mechanisms as key for ensuring genomic stability of cells trunk. This cohort study proposed evaluate the association between rs4793191, rs9567623 and rs1801320 polymorphisms of the BRCA1, BRCA2 and RAD5 genes, acting on the HR mechanism; the rs3835, rs2267437 and rs1805388 of the XRCC5, XRCC6 and LIG4, related with NHEJ mechanism and, finally, ATM rs228593 as molecular sensor damage in DSBs. This genotyping analysis was based on the methodology of PCR-RFLP, between bone marrow samples of 60 patients with MDS, from the University Hospital Walter Cantidio, and 82 peripheral blood samples of elderly healthy volunteers with approval in the CEP / HUWC under protocol No. 027.04.12. The MDS patients were diagnosed by examination of bone marrow and bone marrow cytogenetic analysis technique by G band. The genotypes studied polymorphisms were in Hardy-Weinberg equilibrium (p> 0.05), except for the rs1805388 polymorphism in LIG4 gene. Our results showed for the rs228593 polymorphism of the ATM gene association with low-risk MDS for genotype A /G (p = 0.008, OR 0.225, CI 0.075 to 0.680) with added association of genotype A/G with the clinical variables of cytopenia (p = 0.032, OR 5.250, CI 1.151 to 23.937), in the range of 0-1 in peripheral blood cytopenias, and with favorable prognosis in IPSS (p <0.001, OR 21.95, CI 29.791 to 16.185). For the rs2267437 polymorphism in the gene XRCC6 relate the mutant genotype C / C and G / G + G / G with variable marrow cellularity in the range of normocellular + hypercellular (p = 0.023, OR 5.556 CI 1.270 to 24.239). For the genotypes of rs3835 polymorphism of the XRCC5 gene identify the genotype A / G is highly associated with low-risk MDS (p <0.001, OR 0.100, CI 0.035 to 0.289). Additionally, for the rs1801320 polymorphism of the gene RAD51, we associate the mutant heterozygous genotype G/C with low-risk MDS (p = 0.053, OR 0.453, CI 0.203 to 1.009). For the same polymorphism, we associate the wild genotype G / G with variable age (p <0.001, OR 24.521, CI 64.033 to 93.907), in the range of greater than 60 years old, and with the variable cytopenia (0-1 cytopenias) (p <0.001, OR 16.099, CI 31.299 to 82.808). We did not obtain significant association between polymorphisms rs 4793191, rs9567623 and rs1805388 for the genes BRCA1, BRCA2 and LIG4, respectively, and clinical variables for patients with MDS. In this study we demonstrate that genes related to DSB are also related to the pathogenesis of MDS. These results support the importance of polymorphisms rs228592, rs3835, rs2267437 and rs1801320 in the ATM, XRCC5, XRCC6 and RAD51 genes, respectively, in the maintenance of genomic stability by promoting a better understanding of the genesis and etiology of myelodisplastic syndrome.
Conference papers on the topic "Resposta a danos e reparo no DNA"
Maia Filho, Pedro Aurio, Tarcísio Paulo de Almeida Filho, and Romelia Pinheiro Gonçalves Lemes. "Avaliação da expressão de genes de reparo de danos em fita dupla no DNA em pacientes com leucemia mielóide crônica com e sem uso de imatinibe." In II Encontro do Programa de Pós-Graduação em Ciências Farmacêuticas da Universidade Federal do Ceará e I Simpósio Norte-Nordeste de Ciências Farmacêuticas. Fortaleza - CE, Brazil: Galoa, 2017. http://dx.doi.org/10.17648/ppgcf-2017-66394.
Full textDa Silva, Maria Carolina Raiol, Daniel Vitor Da Silva Monteiro, Daniele De Lima Dos Santos, Ediberto Nunes, and Jaqueline Salim Brabo. "MECANISMO DE DEFESA DO SISTEMA IMUNOLÓGICO CONTRA ÀS SUPERBACTÉRIAS." In I Congresso Brasileiro de Imunologia On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/945.
Full text