Journal articles on the topic 'Restricted Boltzmann machines (RBM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Restricted Boltzmann machines (RBM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Aoki, Ken-Ichi, and Tamao Kobayashi. "Restricted Boltzmann machines for the long range Ising models." Modern Physics Letters B 30, no. 34 (2016): 1650401. http://dx.doi.org/10.1142/s0217984916504017.
Full textCôté, Marc-Alexandre, and Hugo Larochelle. "An Infinite Restricted Boltzmann Machine." Neural Computation 28, no. 7 (2016): 1265–88. http://dx.doi.org/10.1162/neco_a_00848.
Full textLi, Yu, Yuan Zhang, and Yue Ji. "Privacy-Preserving Restricted Boltzmann Machine." Computational and Mathematical Methods in Medicine 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/138498.
Full textBulso, Nicola, and Yasser Roudi. "Restricted Boltzmann Machines as Models of Interacting Variables." Neural Computation 33, no. 10 (2021): 2646–81. http://dx.doi.org/10.1162/neco_a_01420.
Full textAssis, Carlos A. S., Eduardo J. Machado, Adriano C. M. Pereira, and Eduardo G. Carrano. "Hybrid deep learning approach for financial time series classification." Revista Brasileira de Computação Aplicada 10, no. 2 (2018): 54–63. http://dx.doi.org/10.5335/rbca.v10i2.7904.
Full textCheng, Song, Jing Chen, and Lei Wang. "Information Perspective to Probabilistic Modeling: Boltzmann Machines versus Born Machines." Entropy 20, no. 8 (2018): 583. http://dx.doi.org/10.3390/e20080583.
Full textCho, KyungHyun, Tapani Raiko, and Alexander Ilin. "Enhanced Gradient for Training Restricted Boltzmann Machines." Neural Computation 25, no. 3 (2013): 805–31. http://dx.doi.org/10.1162/neco_a_00397.
Full textZhang, Jingshuai, Yuanxin Ouyang, Weizhu Xie, Wenge Rong, and Zhang Xiong. "Context-aware restricted Boltzmann machine meets collaborative filtering." Online Information Review 44, no. 2 (2018): 455–76. http://dx.doi.org/10.1108/oir-02-2017-0069.
Full textWang, Xi-Li, and Fen Chen. "Shape Modeling Based on Convolutional Restricted Boltzmann Machines." MATEC Web of Conferences 173 (2018): 01022. http://dx.doi.org/10.1051/matecconf/201817301022.
Full textWei, Jiangshu, Jiancheng Lv, and Zhang Yi. "A New Sparse Restricted Boltzmann Machine." International Journal of Pattern Recognition and Artificial Intelligence 33, no. 10 (2019): 1951004. http://dx.doi.org/10.1142/s0218001419510042.
Full textLe Roux, Nicolas, and Yoshua Bengio. "Representational Power of Restricted Boltzmann Machines and Deep Belief Networks." Neural Computation 20, no. 6 (2008): 1631–49. http://dx.doi.org/10.1162/neco.2008.04-07-510.
Full textDewi, Christine, Rung-Ching Chen, Hendry, and Hsiu-Te Hung. "Experiment Improvement of Restricted Boltzmann Machine Methods for Image Classification." Vietnam Journal of Computer Science 08, no. 03 (2021): 417–32. http://dx.doi.org/10.1142/s2196888821500184.
Full textCrawford, Daniel, Anna Levit, Navid Ghadermarzy, Jaspreet S. Oberoi, and Pooya Ronagh. "Reinforcement learning using quantum Boltzmann machines." Quantum Information and Computation 18, no. 1&2 (2018): 51–74. http://dx.doi.org/10.26421/qic18.1-2-3.
Full textSchmah, Tanya, Grigori Yourganov, Richard S. Zemel, Geoffrey E. Hinton, Steven L. Small, and Stephen C. Strother. "Comparing Classification Methods for Longitudinal fMRI Studies." Neural Computation 22, no. 11 (2010): 2729–62. http://dx.doi.org/10.1162/neco_a_00024.
Full textMontufar, Guido, and Nihat Ay. "Refinements of Universal Approximation Results for Deep Belief Networks and Restricted Boltzmann Machines." Neural Computation 23, no. 5 (2011): 1306–19. http://dx.doi.org/10.1162/neco_a_00113.
Full textTubiana, Jérôme, Simona Cocco, and Rémi Monasson. "Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins." Neural Computation 31, no. 8 (2019): 1671–717. http://dx.doi.org/10.1162/neco_a_01210.
Full textWang, Qianglong, Xiaoguang Gao, Kaifang Wan, Fei Li, and Zijian Hu. "A Novel Restricted Boltzmann Machine Training Algorithm with Fast Gibbs Sampling Policy." Mathematical Problems in Engineering 2020 (March 20, 2020): 1–19. http://dx.doi.org/10.1155/2020/4206457.
Full textChen, Zhong, Shengwu Xiong, Zhixiang Fang, Ruiling Zhang, Xiangzhen Kong, and Yi Rong. "Topologically Ordered Feature Extraction Based on Sparse Group Restricted Boltzmann Machines." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/267478.
Full textRully Widiastutik, Lukman Zaman P. C. S. W, and Joan Santoso. "Peringkasan Teks Ekstraktif pada Dokumen Tunggal Menggunakan Metode Restricted Boltzmann Machine." Journal of Intelligent System and Computation 1, no. 2 (2019): 58–64. http://dx.doi.org/10.52985/insyst.v1i2.84.
Full textBao, Lin, Xiaoyan Sun, Yang Chen, Guangyi Man, and Hui Shao. "Restricted Boltzmann Machine-Assisted Estimation of Distribution Algorithm for Complex Problems." Complexity 2018 (November 1, 2018): 1–13. http://dx.doi.org/10.1155/2018/2609014.
Full textSong, Haifeng, Guangsheng Chen, and Weiwei Yang. "An Image Classification Algorithm and its Parallel Implementation Based on ANL-RBM." Journal of Information Technology Research 11, no. 3 (2018): 29–46. http://dx.doi.org/10.4018/jitr.2018070103.
Full textKhan, Umair, Pooyan Safari, and Javier Hernando. "Restricted Boltzmann Machine Vectors for Speaker Clustering and Tracking Tasks in TV Broadcast Shows." Applied Sciences 9, no. 13 (2019): 2761. http://dx.doi.org/10.3390/app9132761.
Full textLiu, Junhui, Yajuan Jia, Yaya Wang, and Petr Dolezel. "Development of Driver-Behavior Model Based onWOA-RBM Deep Learning Network." Journal of Advanced Transportation 2020 (September 29, 2020): 1–11. http://dx.doi.org/10.1155/2020/8859891.
Full textKoshka, Yaroslav, Dilina Perera, Spencer Hall, and M. A. Novotny. "Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer." Neural Computation 29, no. 7 (2017): 1815–37. http://dx.doi.org/10.1162/neco_a_00974.
Full textHe, Xiao-hui, Dong Wang, Yan-feng Li, and Chun-hua Zhou. "A Novel Bearing Fault Diagnosis Method Based on Gaussian Restricted Boltzmann Machine." Mathematical Problems in Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/2957083.
Full textLarochelle, Hugo, Yoshua Bengio, and Joseph Turian. "Tractable Multivariate Binary Density Estimation and the Restricted Boltzmann Forest." Neural Computation 22, no. 9 (2010): 2285–307. http://dx.doi.org/10.1162/neco_a_00014.
Full textJiang, Yun, Junyu Zhuo, Juan Zhang, and Xiao Xiao. "The optimization of parallel convolutional RBM based on Spark." International Journal of Wavelets, Multiresolution and Information Processing 17, no. 02 (2019): 1940011. http://dx.doi.org/10.1142/s0219691319400113.
Full textFischer, Asja, and Christian Igel. "Bounding the Bias of Contrastive Divergence Learning." Neural Computation 23, no. 3 (2011): 664–73. http://dx.doi.org/10.1162/neco_a_00085.
Full textSusilawati, Susilawati, and Muhathir Muhathir. "Analisis Pengaruh Fungsi Aktivasi, Learning Rate Dan Momentum Dalam Menentukan Mean Square Error (MSE) Pada Jaringan Saraf Restricted Boltzmann Machines (RBM)." JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 2, no. 2 (2019): 77. http://dx.doi.org/10.31289/jite.v2i2.2162.
Full textRastgoo, Razieh, Kourosh Kiani, and Sergio Escalera. "Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine." Entropy 20, no. 11 (2018): 809. http://dx.doi.org/10.3390/e20110809.
Full textSavitha, Ramasamy, ArulMurugan Ambikapathi, and Kanagasabai Rajaraman. "Online RBM: Growing Restricted Boltzmann Machine on the fly for unsupervised representation." Applied Soft Computing 92 (July 2020): 106278. http://dx.doi.org/10.1016/j.asoc.2020.106278.
Full textDai, Xiaoai, Junying Cheng, Yu Gao, et al. "Deep Belief Network for Feature Extraction of Urban Artificial Targets." Mathematical Problems in Engineering 2020 (May 30, 2020): 1–13. http://dx.doi.org/10.1155/2020/2387823.
Full textLi, Ruifan, Fangxiang Feng, Xiaojie Wang, Peng Lu, and Bohan Li. "Obtaining Cross Modal Similarity Metric with Deep Neural Architecture." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/293176.
Full textCui, Zongyong, Zongjie Cao, Jianyu Yang, and Hongliang Ren. "Hierarchical Recognition System for Target Recognition from Sparse Representations." Mathematical Problems in Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/527095.
Full textAldwairi, Tamer, Dilina Perera, and Mark A. Novotny. "Measuring the Impact of Accurate Feature Selection on the Performance of RBM in Comparison to State of the Art Machine Learning Algorithms." Electronics 9, no. 7 (2020): 1167. http://dx.doi.org/10.3390/electronics9071167.
Full textMahmoud, Abeer M., and Hanen Karamti. "Classifying a type of brain disorder in children: an effective fMRI based deep attempt." Indonesian Journal of Electrical Engineering and Computer Science 22, no. 1 (2021): 260. http://dx.doi.org/10.11591/ijeecs.v22.i1.pp260-269.
Full textGuo, Xian, Zhang, Li, and Ren. "Hybrid IRBM-BPNN Approach for Error Parameter Estimation of SINS on Aircraft." Sensors 19, no. 17 (2019): 3682. http://dx.doi.org/10.3390/s19173682.
Full textBehera, Dayal Kumar, Madhabananda Das, Subhra Swetanisha, and Prabira Kumar Sethy. "Hybrid model for movie recommendation system using content K-nearest neighbors and restricted Boltzmann machine." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 1 (2021): 445. http://dx.doi.org/10.11591/ijeecs.v23.i1.pp445-452.
Full textLiu, Qinghua, Lu Sun, Alain Kornhauser, Jiahui Sun, and Nick Sangwa. "Road roughness acquisition and classification using improved restricted Boltzmann machine deep learning algorithm." Sensor Review 39, no. 6 (2019): 733–42. http://dx.doi.org/10.1108/sr-05-2018-0132.
Full textHuang, Jizhong, and Yepeng Guan. "Dropout Deep Belief Network Based Chinese Ancient Ceramic Non-Destructive Identification." Sensors 21, no. 4 (2021): 1318. http://dx.doi.org/10.3390/s21041318.
Full textWu, Xin-Jie, Ming-Da Xu, Chang-Di Li, Chong Ju, Qian Zhao, and Shi-Xing Liu. "Research on image reconstruction algorithms based on autoencoder neural network of Restricted Boltzmann Machine (RBM)." Flow Measurement and Instrumentation 80 (August 2021): 102009. http://dx.doi.org/10.1016/j.flowmeasinst.2021.102009.
Full textYu, He, Zaike Tian, Hongru Li, Baohua Xu, and Guoqing An. "A Novel Deep Belief Network Model Constructed by Improved Conditional RBMs and its Application in RUL Prediction for Hydraulic Pumps." International Journal of Acoustics and Vibration 25, no. 3 (2020): 373–82. http://dx.doi.org/10.20855/ijav.2020.25.31669.
Full textNguyen, Kuong Trong, Eiji Uchino, and Noriaki Suetake. "Recognition of Coronary Atherosclerotic Plaque Tissue on Intravascular Ultrasound Images by Using Misclassification Sensitive Training of Discriminative Restricted Boltzmann Machine." Journal of Biomimetics, Biomaterials and Biomedical Engineering 37 (June 2018): 85–93. http://dx.doi.org/10.4028/www.scientific.net/jbbbe.37.85.
Full textMaldonado-Chan, Mauricio, Andres Mendez-Vazquez, and Ramon Osvaldo Guardado-Medina. "Multimodal Tucker Decomposition for Gated RBM Inference." Applied Sciences 11, no. 16 (2021): 7397. http://dx.doi.org/10.3390/app11167397.
Full textNIWA, Tadaaki, Keitaro NARUSE, Ryousuke OOE, Masahiro KINOSHITA, Tamotsu MITAMURA, and Takashi KAWAKAMI. "1A1-K02 A Music generation by Associative Memorization Model of The Music Features using Restricted Boltzmann Machine and Conditional RBM(Evolution and Learning for Robotics)." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2014 (2014): _1A1—K02_1—_1A1—K02_3. http://dx.doi.org/10.1299/jsmermd.2014._1a1-k02_1.
Full textChen, Shuting, and Dapeng Tan. "A SA-ANN-Based Modeling Method for Human Cognition Mechanism and the PSACO Cognition Algorithm." Complexity 2018 (January 4, 2018): 1–21. http://dx.doi.org/10.1155/2018/6264124.
Full textLe Roux, Nicolas, Nicolas Heess, Jamie Shotton, and John Winn. "Learning a Generative Model of Images by Factoring Appearance and Shape." Neural Computation 23, no. 3 (2011): 593–650. http://dx.doi.org/10.1162/neco_a_00086.
Full textZhang, Kaiyu, Shanshan Shi, Shu Liu, Junjie Wan, and Lijia Ren. "Research on DBN-based Evaluation of Distribution Network Reliability." E3S Web of Conferences 242 (2021): 03004. http://dx.doi.org/10.1051/e3sconf/202124203004.
Full textJoghee Bhojan, Rajkumar, D. Ramyachitra, Subramanian Ganesan, and Ragavi Rajkumar. "A Hybrid Deep Learning Based Visual System for In-Vehicle Safety." European Journal of Engineering Research and Science 4, no. 4 (2019): 43–47. http://dx.doi.org/10.24018/ejers.2019.4.4.1185.
Full textLiu, Jianlin, Fenxiong Chen, and Dianhong Wang. "Data Compression Based on Stacked RBM-AE Model for Wireless Sensor Networks." Sensors 18, no. 12 (2018): 4273. http://dx.doi.org/10.3390/s18124273.
Full text