Academic literature on the topic 'Restricted Open-Shell Kohn-Sham (ROKS)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Restricted Open-Shell Kohn-Sham (ROKS).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Restricted Open-Shell Kohn-Sham (ROKS)"

1

Schulte, Marius, and Irmgard Frank. "Restricted open-shell Kohn–Sham theory: N unpaired electrons." Chemical Physics 373, no. 3 (2010): 283–88. http://dx.doi.org/10.1016/j.chemphys.2010.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Büchel, Ralf, Luis Álvarez, Jan Grage, Dominykas Maniscalco, and Irmgard Frank. "On the Simulation of Photoreactions Using Restricted Open-Shell Kohn–Sham Theory." Molecules 29, no. 18 (2024): 4509. http://dx.doi.org/10.3390/molecules29184509.

Full text
Abstract:
It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for the nuclear motion. This approach is known as ab initio molecular dynamics. In contrast, the simulation of excited-state reactions at this level of theory is significantly more difficult. It turns out that the self-consistent solution of the Kohn–Sham equations is not easily reached in excited-state
APA, Harvard, Vancouver, ISO, and other styles
3

Frank, Irmgard, and Konstantina Damianos. "Restricted open-shell Kohn-Sham theory: Simulation of the pyrrole photodissociation." Journal of Chemical Physics 126, no. 12 (2007): 125105. http://dx.doi.org/10.1063/1.2711188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kowalczyk, Tim, Takashi Tsuchimochi, Po-Ta Chen, Laken Top, and Troy Van Voorhis. "Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach." Journal of Chemical Physics 138, no. 16 (2013): 164101. http://dx.doi.org/10.1063/1.4801790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Billeter, Salomon R., and Daniel Egli. "Calculation of nonadiabatic couplings with restricted open-shell Kohn-Sham density-functional theory." Journal of Chemical Physics 125, no. 22 (2006): 224103. http://dx.doi.org/10.1063/1.2360261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nonnenberg, Christel, Christoph Bräuchle та Irmgard Frank. "Restricted open-shell Kohn–Sham theory for π–π* transitions. III. Dynamics of aggregates". Journal of Chemical Physics 122, № 1 (2005): 014311. http://dx.doi.org/10.1063/1.1829053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Langer, Holger, and Nikos L. Doltsinis. "Excited state tautomerism of the DNA base guanine: A restricted open-shell Kohn–Sham study." Journal of Chemical Physics 118, no. 12 (2003): 5400–5407. http://dx.doi.org/10.1063/1.1555121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nonnenberg, Christel, Stephan Grimm та Irmgard Frank. "Restricted open-shell Kohn–Sham theory for π–π* transitions. II. Simulation of photochemical reactions". Journal of Chemical Physics 119, № 22 (2003): 11585–90. http://dx.doi.org/10.1063/1.1623743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Filatov, Michael, and Sason Shaik. "Application of spin-restricted open-shell Kohn–Sham method to atomic and molecular multiplet states." Journal of Chemical Physics 110, no. 1 (1999): 116–25. http://dx.doi.org/10.1063/1.477941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grimm, Stephan, Christel Nonnenberg та Irmgard Frank. "Restricted open-shell Kohn–Sham theory for π–π* transitions. I. Polyenes, cyanines, and protonated imines". Journal of Chemical Physics 119, № 22 (2003): 11574–84. http://dx.doi.org/10.1063/1.1623742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Restricted Open-Shell Kohn-Sham (ROKS)"

1

Grimm, Stephan. "Theoretische Untersuchung von pi-Bindungssystemen im Restricted Open Shell Kohn-Sham-Modell." Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-47476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grimm, Stephan Michael. "Theoretische Untersuchung von p-Bindungssystemen [Pi-Bindungssystemen] im Restricted-open-shell-Kohn-Sham-Modell." [S.l.] : [s.n.], 2005. http://edoc.ub.uni-muenchen.de/archive/00004747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Diarra, Cheick Oumar. "Modélisation par dynamique moléculaire ab initio du transport des excitons et du transport thermique dans les semiconducteurs organiques pour la collecte d'énergie." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD013.

Full text
Abstract:
L'exciton joue un rôle clé dans le fonctionnement des cellules solaires organiques (OSCs). Comprendre sa dynamique dans les semiconducteurs organiques est essentiel, notamment pour améliorer la longueur de diffusion, une propriété déterminante pour la performance des hétérojonctions planaires, envisagées comme une alternative plus stable aux hétérojonctions en volume (BHJ). Dans la première partie de cette thèse, nous avons développé une approche méthodologique robuste et polyvalente pour évaluer la longueur de diffusion de l'exciton dans les semiconducteurs organiques. Cette approche, basée s
APA, Harvard, Vancouver, ISO, and other styles
4

Grimm, Stephan Michael [Verfasser]. "Theoretische Untersuchung von π-Bindungssystemen [Pi-Bindungssystemen] im Restricted-open-shell-Kohn-Sham-Modell / von Stephan Michael Grimm". 2005. http://d-nb.info/978848551/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Restricted Open-Shell Kohn-Sham (ROKS)"

1

Schautz, F., F. Buda, and C. Filippi. "Excitations in photoactive molecules from quantum Monte Carlo." In Quantum Monte Carlo. Oxford University PressNew York, NY, 2007. http://dx.doi.org/10.1093/oso/9780195310108.003.00149.

Full text
Abstract:
Abstract Among the several quantum approaches to the accurate description of excitation processes in biological systems, the most promising candidates are: CASPT2, complete active space second-order perturbation theory; TDDFT, time-dependent density functional theory; ROKS, the restricted open-shell Kohn-Sham method; and QMC, quantum Monte Carlo. Each of these has its disadvantages. CASPT2 scales poorly with system size and is limited to smaller molecules. ROKS and TDDFT can be applied to very large systems but they may or may not be adequate for photoactive molecules. QMC scales favorably wit
APA, Harvard, Vancouver, ISO, and other styles
2

Autschbach, Jochen. "Self-consistent Field Orbital Methods." In Quantum Theory for Chemical Applications. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190920807.003.0008.

Full text
Abstract:
This chapter discusses the concepts underlying the Hartree-Fock (HF) electronic structure method. First, it is shown how the energy expectation value is calculated for a Slater determinant (SD) wavefunction in the case of orthonormal orbitals. This leads to the definition of the electron repulsion integrals (ERIs). Next, the energy is minimized subject to the orthonormality constraints. This leads to the HF equation for the orbitals. The HF orbital energies are Langrange multipliers representing the constraints. An unknown set of orbitals can be determined from an initial guess via a self-cons
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!