Academic literature on the topic 'Retrosynthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Retrosynthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Retrosynthesis"
Williams, Craig M., and Madeleine A. Dallaston. "The Future of Retrosynthesis and Synthetic Planning: Algorithmic, Humanistic or the Interplay?" Australian Journal of Chemistry 74, no. 5 (2021): 291. http://dx.doi.org/10.1071/ch20371.
Full textSmith, Joel M., Stephen J. Harwood, and Phil S. Baran. "Radical Retrosynthesis." Accounts of Chemical Research 51, no. 8 (August 2, 2018): 1807–17. http://dx.doi.org/10.1021/acs.accounts.8b00209.
Full textTurner, Nicholas J., and Elaine O'Reilly. "Biocatalytic retrosynthesis." Nature Chemical Biology 9, no. 5 (April 17, 2013): 285–88. http://dx.doi.org/10.1038/nchembio.1235.
Full textSS, Fatahala. "Retrosynthesis analysis; a way to design a retrosynthesis map for Pyridine and pyrimidine ring." Annals of Advances in Chemistry 1, no. 2 (2017): 057–60. http://dx.doi.org/10.29328/journal.aac.1001007.
Full textNair, Vishnu H., Philippe Schwaller, and Teodoro Laino. "Data-driven Chemical Reaction Prediction and Retrosynthesis." CHIMIA International Journal for Chemistry 73, no. 12 (December 18, 2019): 997–1000. http://dx.doi.org/10.2533/chimia.2019.997.
Full textGuo, Zhongliang, Stephen Wu, Mitsuru Ohno, and Ryo Yoshida. "Bayesian Algorithm for Retrosynthesis." Journal of Chemical Information and Modeling 60, no. 10 (September 25, 2020): 4474–86. http://dx.doi.org/10.1021/acs.jcim.0c00320.
Full textProudfoot, John R. "Molecular Complexity and Retrosynthesis." Journal of Organic Chemistry 82, no. 13 (June 12, 2017): 6968–71. http://dx.doi.org/10.1021/acs.joc.7b00714.
Full textTurner, Nicholas J., and Elaine O'Reilly. "ChemInform Abstract: Biocatalytic Retrosynthesis." ChemInform 44, no. 29 (July 1, 2013): no. http://dx.doi.org/10.1002/chin.201329258.
Full textRother, Dörte, and Stephan Malzacher. "Computer-aided enzymatic retrosynthesis." Nature Catalysis 4, no. 2 (February 2021): 92–93. http://dx.doi.org/10.1038/s41929-021-00582-5.
Full textChen, Lihua, Joseph Kern, Jordan P. Lightstone, and Rampi Ramprasad. "Data-assisted polymer retrosynthesis planning." Applied Physics Reviews 8, no. 3 (September 2021): 031405. http://dx.doi.org/10.1063/5.0052962.
Full textDissertations / Theses on the topic "Retrosynthesis"
Ishida, Shoichi. "Development of an AI-Driven Organic Synthesis Planning Approach with Retrosynthesis Knowledge." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263605.
Full textGehrke, Nicole. "Retrosynthese von Perlmutt." Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2006/797/.
Full textIm ersten Schritt wurden in einem simplen Kristallisationsansatz komplexe Calciumcarbonatüberstrukturen ohne die Verwendung von Additiven synthetisiert. Es wurde gezeigt, daß diese durch orientierte Anlagerung von Nanopartikeln gebildet werden, bei der dipolare Felder eine wichtige Rolle zu spielen scheinen. Dieser Mechansimus war bislang für Calciumcarbonat unbekannt und ermöglicht die Synthese komplexer Kristallmorphologien, wodurch die Frage aufgeworfen wird, ob er bei der Biomineralbildung von Bedeutung sein kann. Durch Einsatz minimaler Mengen eines einfachen, synthetischen Additivs bei der Kristallisation wurden zu Überstrukturen angeordnete Aragonitplättchen synthetisiert, die von einer wenige nm dicken Schicht aus amorphen Calciumcarbonat umgeben sind. Eine solche Schicht wurde auch bei den Aragonitplättchen Perlmutts entdeckt (s.u.) und bietet möglicherweise in verschiedenen Systemen eine Erklärung für die Stabilisierung der sonst metastabilen Aragonitphase.
Im zweiten Schritt wurden bei der Untersuchung von natürlichem Perlmutt zwei bislang unbekannte Strukturmerkmale entdeckt: Es gibt Bereiche, die nicht aus den charakteristischen Plättchen bestehen, sondern wesentlich weniger stark mineralisert sind. Die Mineralphase besteht in diesen Bereichen aus Nanopartikeln. Es wurde weiterhin gezeigt, daß die Aragonitplättchen von einer wenige nm dicken Schicht aus amorphem Calciumcarbonat umgeben ist. Die gängigen Modelle der Perlmuttbildung sind mit diesen Beobachtungen nicht zu vereinbaren und somit zu hinterfragen. Dagegen deuten diese Ergebnisse ein Wachstum von Perlmutt über ACC-Nanopartikel an.
Unter der Annahme der Bedeutung physikalisch-chemischer Mechanismen in der Biomineralisation wurde schließlich als dritter Schritt ein Ansatz zur in vitro-Retrosynthese von Biomineralien ausgehend von ihrer unlöslichen Matrix entwickelt.
Mit diesem Ansatz ist es erstmals gelungen, künstliches Perlmutt auf synthetischem Wege herzustellen, das morphologisch nicht vom Original zu unterscheiden ist. Die existierenden Unterschiede konnten zeigen, daß der Mineralisationsprozeß nicht auf ein spezifisches Mikroumgebungssystem beschränkt, sondern "allgemeiner gültig"' sein muß.
Bei der Retrosynthese gibt es zwei Schlüsselfaktoren: Zum einen die demineralisierte unlösliche Perlmuttmatrix als dreidimensionales Gerüst für das künstliche Perlmutt, zum anderen amorphe Precursorpartikel, die die Mineralphase bilden. Es werden keinerlei Proteine oder andere Biomoleküle verwendet. Dieser Ansatz bietet die Möglichkeit, den Mineralisationsprozeß an einem in vitro-Modellsystem zu verfolgen, was für das in vivo-System, wenn überhaupt, nur unter starken Einschränkungen möglich ist.
Es wurde gezeigt, daß das künstliche Perlmutt über die Mesoskalentransformation von ACC-Precursorn innerhalb der Matrix gebildet wird und als möglicher Mechanismus bei der Biomineralisation von natürlichem Perlmutt diskutiert. Es konnte in der vorliegenden Arbeit konsequent gezeigt werden, daß die Imitation von Biomineralisationsprozessen in in vitro-Ansätzen möglich ist, wobei chemisch-physikalische Parameter dominieren.
In zukünftigen Studien sollten einerseits die mechanischen Eigenschaften des künstlichen Perlmutts untersucht werden, wofür sich in Vorversuchen im Rahmen dieser Arbeit die Nanoindentierung als geeignet herausgestellt hat. Es sollte geprüft werden, ob das hier ermittelte Prinzip zur Mineralisierung in der Materialentwicklung angewendet werden kann. Andererseits sollte die Retrosynthese auf andere Systeme ausgeweitet und in vivo-Studien durchgeführt werden, um die Gültigkeit der vorgeschlagenen Mechanismen zu überprüfen.
This thesis highlights the importance of physical-chemical mechanisms in biomineralisation and, thus, challenges the widely accepted dominance of specific biomolecular recognition mechanisms.
The work is divided into three parts: the first part addresses the crystallisation of calcium carbonate; the second part focuses on an intensive study of the biomineral, nacre, and, lastly, a retrosynthesis model system is designed and applied to synthesize artificial nacre. A mechanism for nacre mineralisation in nature is proposed.
Initially, complex calcium carbonate superstructures were synthesized in the absence of any additive. These were shown to grow by an oriented attachment mechanism of nanoparticles, presumably under the influence of dipolar fields. This growth mechanism has, to date, not been described for calcium carbonate. This mechanism opens the possibility to synthesize complex crystal morphologies of calcium carbonate and arises the question as to whether it plays a role in the growth of biominerals.
With the presence of small amounts of additives in calcium carbonate crystallisation it was possible to synthesize superstructures of aragonite platelets, each of which surrounded by a layer of amorphous calcium carbonate (ACC). Such ACC layers were also found in natural nacre (see below) and may explain the stabilisation of the metastable calcium carbonate polymorph aragonite.
In the second part of this thesis two unknown features of nacre structures were distinguished: Some areas within the nacre do not consist of the characteristic aragonite platelets but are mineralized only to a low degree. In these areas the mineral phase is clearly composed of nanoparticles. Furthermore, the aragonite platelets of nacre are shown to be surrounded by an ACC layer. Both observations contradict the classical models of nacre growth mechanisms but hint towards a growth via ACC nanoparticles.
Assuming the importance of physical-chemical mechanisms in biomineralisation, an approach for the in vitro retrosynthesis of biominerals was designed. Through this, it was possible, for the first time, to synthesize artificial nacre, which was indistinguishable in morphology from the original. The non-morphological differences between original and synthesized nacre showed that the biological process of mineralization is not limited to one specific microenvironment, but must be more general.
Two key factors are of importance for the retrosynthesis approach: 1) The demineralised nacre matrix, which forms a scaffold for the artificial mineral phase and; 2) amorphous nanoparticles as precursors, which transform into the mineral phase. No proteins or other biomolecules were utilized. In this way, the biomineralisation process could be followed in an in vitro model, a process, which is hardly possible in such detail under in vivo conditions. This work proves that the artificial nacre grows by a mesoscale transformation of ACC nanoparticles, and discusses this mechanism as a possible growth mechanism of natural nacre. This work consequently shows that it is possible to imitate biomineralisation processes in vitro and that, in–vitro, these processes are driven by physico-chemical parameters.
Future studies will involve investigation of the mechanical properties of the artificial nacre. First experiments indicate, that nanoindentation is hereby suitable. The potential application of the in vitro mineralization mechanism for new material development will be investigated. Furthermore, the retrosynthesis will be applied to other biomineral systems and, subsequently, in vivo studies will be performed so as to investigate the role of the proposed mechanisms for the natural biomineralisation process.
Koch, Mathilde. "Computational modeling to design and analyze synthetic metabolic circuits." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS467/document.
Full textThe aims of this thesis are two-fold, and centered on synthetic metabolic circuits, which perform sensing and computation using enzymes.The first part consisted in developing reinforcement and active learning tools to improve the design of metabolic circuits and optimize biosensing and bioproduction. In order to do this, a novel algorithm (RetroPath3.0) based on similarity-guided Monte Carlo Tree Search to improve the exploration of the search space is presented. This algorithm, combined with data-derived reaction rules and varying levels of enzyme promiscuity, allows to focus exploration on the most promising compounds and pathways for bio-retrosynthesis. As retrosynthesis-based pathways can be implemented in whole cell or cell-free systems, an active learning method to efficiently explore the combinatorial space of components for rational media optimization was also developed, to design the best media maximizing cell-free productivity.The second part consisted in developing analysis tools, to generate knowledge from biological data and model biosensor response. First, the effect of plasmid copy number on sensitivity of a transcription-factor based biosensor was modeled. Then, using cell-free systems allowing for broader control over the experimental factors such as DNA concentration, resource usage was modeled to ensure our current knowledge of underlying phenomenons is sufficient to account for circuit behavior, using either empirical models or mechanistic models. Coupled with metabolic circuit design, those models allowed us to develop a new biocomputation approach, called metabolic perceptrons.Overall, this thesis presents tools to design and analyse synthetic metabolic circuits, which are a novel way to perform computation in synthetic biology
Anzicek, Nika. "Studies towards a second-generation synthesis of the aplyronines." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267831.
Full textGehrke, Nicole [Verfasser], and Helmut [Akademischer Betreuer] Cölfen. "Retrosynthese von Perlmutt / Nicole Gehrke ; Betreuer: Helmut Cölfen." Potsdam : Universität Potsdam, 2006. http://d-nb.info/1218369582/34.
Full textPy, Sandrine. "Synthese de taxoides : approches via des reactions de retrosynthese a partir de la 10-desacetyl baccatine iii." Paris 11, 1995. http://www.theses.fr/1995PA112026.
Full textBooks on the topic "Retrosynthesis"
Šunjić, Vitomir, and Vesna Petrović Peroković. Organic Chemistry from Retrosynthesis to Asymmetric Synthesis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6.
Full textWarren, Stuart. Organische Retrosynthese. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-91222-0.
Full textA, Snyder S., ed. Classics in total synthesis II: More targets, strategies, methods. Weinheim: Wiley-VCH, 2003.
Find full textClassics in total synthesis II: More targets, strategies, methods. Weinheim: Wiley-VCH, 2003.
Find full textNicolaou, K. C. Classics in total synthesis: Targets, strategies, methods. Weinheim: VCH, 1996.
Find full textTurner, Nicholas J., and Luke Humphreys. Biocatalysis in Organic Synthesis: The Retrosynthesis Approach. Royal Society of Chemistry, The, 2018.
Find full textHybrid Retrosynthesis: A Beginner's Guide to Synthesis. Elsevier Science & Technology Books, 2015.
Find full textŠunjić, Vitomir, and Vesna Petrović Peroković. Organic Chemistry from Retrosynthesis to Asymmetric Synthesis. Springer, 2016.
Find full textŠunjić, Vitomir, and Vesna Petrović Peroković. Organic Chemistry from Retrosynthesis to Asymmetric Synthesis. Springer, 2018.
Find full textBook chapters on the topic "Retrosynthesis"
Mol, Milsee, Vineetha Mandlik, and Shailza Singh. "Microbial Chassis Assisting Retrosynthesis." In Systems Biology Application in Synthetic Biology, 1–10. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2809-7_1.
Full textKarpov, Pavel, Guillaume Godin, and Igor V. Tetko. "A Transformer Model for Retrosynthesis." In Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions, 817–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30493-5_78.
Full textFinnigan, William, Sabine L. Flitsch, Lorna J. Hepworth, and Nicholas J. Turner. "Enzyme Cascade Design: Retrosynthesis Approach." In Enzyme Cascade Design and Modelling, 7–30. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65718-5_2.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Retrosynthetic Consideration of Heterocyclic Structures." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 155–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_7.
Full textMollinga, Joris, and Valeriu Codreanu. "Scaling Out Transformer Models for Retrosynthesis on Supercomputers." In Lecture Notes in Networks and Systems, 102–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_4.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Disconnection, Synthons, Introductory Example." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 1–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_1.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Retrosynthetic Analysis of the Compounds with One Functional Group." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 21–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_2.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Stereoisomers and Stereoselective Reactions—“Departure into Third Dimension”." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 51–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_3.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Disconnection with Participation of Two Functional Groups." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 67–102. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_4.
Full textŠunjić, Vitomir, and Vesna Petrović Peroković. "Illogical Disconnections with Participation of Two Groups." In Organic Chemistry from Retrosynthesis to Asymmetric Synthesis, 103–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29926-6_5.
Full textConference papers on the topic "Retrosynthesis"
Lee, Hankook, Sungsoo Ahn, Seung-Woo Seo, You Young Song, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin. "RetCL: A Selection-based Approach for Retrosynthesis via Contrastive Learning." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/368.
Full textRubiyanto, Dwiarso, Nurcahyo Iman Prakoso, and Dhina Fitriastuti. "Implementation of student-centered learning (SCL) with retrosynthesis module-assisted on synthetic organic chemistry course." In PROCEEDINGS OF THE 3RD INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2019): Exploring New Innovation in Metallurgy and Materials. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002684.
Full textFortunato, Michael E., Connor W. Coley, Brian C. Barnes, and Klavs F. Jensen. "Machine learned prediction of reaction template applicability for data-driven retrosynthetic predictions of energetic materials." In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000850.
Full textLuce, H. H., and R. Govind. "Neural network applications in synthetic organic chemistry. I. A hybrid system which performs retrosynthetic analysis." In 1990 IJCNN International Joint Conference on Neural Networks. IEEE, 1990. http://dx.doi.org/10.1109/ijcnn.1990.137592.
Full text