Academic literature on the topic 'Reversal direct shear test'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reversal direct shear test.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reversal direct shear test"
Lee, K. M., and V. R. Manjunath. "Soil-geotextile interface friction by direct shear tests." Canadian Geotechnical Journal 37, no. 1 (February 1, 2000): 238–52. http://dx.doi.org/10.1139/t99-124.
Full textSuzuki, Motoyuki, Shunsuke Tsuzuki, and Tetsuro Yamamoto. "Residual Strength Characteristics of Naturally and Artificially Cemented Clays in Reversal Direct Box Shear Test." Soils and Foundations 47, no. 6 (December 2007): 1029–44. http://dx.doi.org/10.3208/sandf.47.1029.
Full textSrokosz, Piotr, Ireneusz Dyka, and Marcin Bujko. "Interpretation of shear modulus degradation tests." Studia Geotechnica et Mechanica 40, no. 2 (September 21, 2018): 125–32. http://dx.doi.org/10.2478/sgem-2018-0015.
Full textZhang, Zhiqiang, Jiuyang Huan, Ning Li, and Mingming He. "Suggested New Statistical Parameter for Estimating Joint Roughness Coefficient considering the Shear Direction." Advances in Civil Engineering 2021 (February 27, 2021): 1–16. http://dx.doi.org/10.1155/2021/8872873.
Full textRan, Wuping, Yu Zhang, Ling Li, Xizhong Shen, Hailin Zhu, and Yongbo Zhang. "Characterization of Bonding between Asphalt Concrete Layer under Water and Salt Erosion." Materials 12, no. 19 (September 20, 2019): 3055. http://dx.doi.org/10.3390/ma12193055.
Full textHe, Peng, Liuying Sun, and Zhen Wang. "Direct Shear Test of Unsaturated Soil." Earth Sciences Research Journal 21, no. 4 (October 1, 2017): 183–88. http://dx.doi.org/10.15446/esrj.v21n4.66103.
Full textAu, S. W. C. "Reversal shear box test for Hong Kong saprolitic soils." Quarterly Journal of Engineering Geology and Hydrogeology 26, no. 3 (August 1993): 233–37. http://dx.doi.org/10.1144/gsl.qjegh.1993.026.003.09.
Full textDong, Yun, Yong Cun Wang, Li Guo Lu, and Wei Wang. "The Improved Shear Strength Calculation Method in Direct Shear Test." Applied Mechanics and Materials 405-408 (September 2013): 353–57. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.353.
Full textWang, Jun-Jie, Hui-Ping Zhang, Hui-Bo Wen, and Yue Liang. "Shear Strength of an Accumulation Soil from Direct Shear Test." Marine Georesources & Geotechnology 33, no. 2 (October 24, 2014): 183–90. http://dx.doi.org/10.1080/1064119x.2013.828821.
Full textGu, Xue F., Julian P. Seidel, and Chris M. Haberfield. "Direct Shear Test of Sandstone-Concrete Joints." International Journal of Geomechanics 3, no. 1 (September 2003): 21–33. http://dx.doi.org/10.1061/(asce)1532-3641(2003)3:1(21).
Full textDissertations / Theses on the topic "Reversal direct shear test"
Maghsoudloo, Arash. "Nonlinearity Of The Residual Shear Strength Envelope In Stiff Clays." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615551/index.pdf.
Full textresidual shear strength&rdquo
. The residual shear strength envelopes of stiff clays are curved, but for practical purposes represented by linear envelopes. This study investigates the nonlinearity of the residual shear strength envelope using experimental evidence (i) from laboratory reversal direct shear tests on two stiff clays (Ankara clay and kaolinite) at 25 to 900 kPa effective normal stresses and (ii) from laboratory data collected from literature. To evaluate the importance of nonlinearity of the envelope for geotechnical engineering practice, by limit equilibrium method, (a) case histories of reactivated landslides are analyzed and (b) a parametric study is carried out. Conclusions of this study are: (1) The residual shear strength envelopes of both Ankara clay and kaolinite are nonlinear, and can be represented by a power function (cohesion is zero). (2) At least 3 reversals or cumulative 20 mm shear displacement of direct shear box is recommended to reach residual condition. (3) Empirical relations between plasticity index and residual friction angle can accurately estimate the residual strength of stiff clays. (4) Nonlinearity is especially important for landslides where average effective normal stress on the shear plane is less than 50 kPa, both for translational and rotational failures. For such slopes using a linear strength envelope overestimates the factor of safety (more significantly for the case of high pore pressures). (5) As the plasticity index increases, the power &ldquo
b&rdquo
of the nonlinear shear strength envelope decreases, indicating more significant nonlinearity. For less plastic materials, using linear and nonlinear shear strength envelopes does not affect the factor of safety.
Xu, Yingyi. "Residual Strength of Franciscan-Derived Clay." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2128.
Full textMelin, Hanna. "Controlling parameters for normal and shear behaviour of rock fractures-a study of direct shear test data from SKB." Thesis, KTH, Jord- och bergmekanik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93976.
Full textMcGillivray, Alexander Vamie. "Enhanced Integration of Shear Wave Velocity Profiling in Direct-Push Site Characterization Systems." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19714.
Full textCampanini, Davide. "Comparison between Direct Tensile and Single Lap Shear for FRCM/SRG composites." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17203/.
Full textEchegaray, Oviedo Javier Andrés. "Upgrading the push-off test to analyze the contribution of steel fiber on shear transfer mechanisms." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/43723.
Full textEchegaray Oviedo, JA. (2014). Upgrading the push-off test to analyze the contribution of steel fiber on shear transfer mechanisms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43723
TESIS
Hassan, Zehtab Kaveh. "An Assessment Of The Dynamic Properties Of Adapazari Soils By Cyclic Direct Simple Shear Tests." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612228/index.pdf.
Full textHajdarwish, Ala' M. "Geologic Controls of Shear Strength Behavior of Mudrocks." Kent State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=kent1162259344.
Full textIscimen, Mehmet. "Shearing Behavior Of Curved Interfaces." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7256.
Full textPersson, Erik. "Empirical correlation between undrained shear strength and preconsolidation pressure in Swedish soft clays." Thesis, KTH, Jord- och bergmekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213848.
Full textSkjuvhållfasthet och förkonsolideringstryck är två viktiga jordparametrar för lösa leror. Båda parametrar reflekterar lerans struktur och spänningstillstånd, och empiriska korrelationer för odränerad skjuvhållfasthet, normaliserad mot förkonsolideringstrycket, används därför ofta för att bedöma en leras egenskaper. De empiriska korrelationerna är vanligen kopplade till flytgräns eller plasticitetsindex. Dessa korrelationer har däremot ifrågasatts av studier som i vissa fall istället föreslagit ett konstant förhållande mellan normaliserad odränerad skjuvhållfasthet och plasticitetsgränser. Mätvärden från geotekniska projekt i Sverige visar allmänt stor spridning avseende dessa parametrar och data avviker ofta från etablerade empiriska korrelationer. I examensarbetet har data från direkta skjuvförsök, ödometerförsök och fallkonförsök utvärderats statistiskt och kvalitativt. Totalt omfattar studien 596 jordprover från 146 provtagningspunkter från Stockholm, Göteborg och Uppsala. Syftet med studien är att undersöka korrelationen mellan odränerad skjuvhållfasthet och förkonsolideringstryck. Studien behandlar den normaliserade skjuvhållfashetens flytgränsberoende, Hansbos (1957) och Statens Geotekniska Instituts (2007) empiriska korrelationer, samt den korrektionsfaktor som ska tillämpas på skjuvhållfastheter från fallkonförsök. Resultatet visar att korrektionsfaktorn reducerar skjuvhållfastheten för mycket och att korrigerade skjuvhållfastheter är i sämre samstämmighet med skjuvhållfastheter från direkta skjuvförsök än okorrigerade. Data från fallkonförsök uppvisar inget tydligt flytgränsberoende, medan resultaten från direkta skjuvförsök indikerar ett beroende. Spridningen i data är dock påfallande, särskilt för fallkonförsöket. Relevansen i att tillämpa en linjär empirisk korrelation för odränerad normaliserad från fallkonförsök mot förkonsolideringstryck beroende av flytgräns bör ifrågasättas.
Book chapters on the topic "Reversal direct shear test"
Kodicherla, Shiva Prashanth Kumar, Guobin Gong, Charles K. S. Moy, Lei Fan, and Krabbenhoft Kristian. "Direct Shear Test Simulations Using DEM." In Lecture Notes in Civil Engineering, 849–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_67.
Full textMir, Bashir Ahmed. "Direct Shear Test (DST) for Soils." In Manual of Geotechnical Laboratory Soil Testing, 281–306. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003200260-14.
Full textSbroglia, R. M., R. A. R. Higashi, M. S. Espíndola, V. S. Muller, and P. Betiatto. "Use of Borehole Shear Test to Obtain Shear Strength Data Comparison to Direct Shear Test." In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018—Volume 6, 145–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93142-5_20.
Full textNaeij, Morteza, and Ali Aaghar Mirghasemi. "Numerical Simulation of Direct Shear Test Using Elliptical Particles." In Springer Series in Geomechanics and Geoengineering, 441–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32814-5_61.
Full textBhoi, Aditya Kumar, Sunil Kumar Ahirwar, and Jnanendra Nath Mandal. "Behaviour of Geosynthetics Clay Liner Under Direct Shear Test." In Lecture Notes in Civil Engineering, 1–11. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6346-5_1.
Full textJiang, Yao, and Yanjie Li. "Discrete Element Simulation of the Direct Shear Test of Sandy Soil." In Springer Proceedings in Physics, 801–10. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1926-5_83.
Full textEbrahimian, B., and E. Bauer. "Investigation of Direct Shear Interface Test Using Micro-polar Continuum Approach." In Springer Series in Geomechanics and Geoengineering, 143–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13506-9_21.
Full textRotisciani, G. M., E. Natu, A. de Lillis, D. Sebastiani, and Salvatore Miliziano. "Calibration of an Advanced Constitutive Model Through Direct Shear Test Results." In Challenges and Innovations in Geomechanics, 564–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64514-4_57.
Full textMatsushima, K., Y. Mohri, U. Aqil, S. Yamazaki, and F. Tatsuoka. "Mechanical Behavior of Reinforced Specimen Using Constant Pressure Large Direct Shear Test." In Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, 837–47. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6146-2_63.
Full textNaeij, Morteza, and Ali Aaghar Mirghasemi. "Study of Anisotropies Evolution in Direct Shear Test Using Discrete Element Method." In Springer Series in Geomechanics and Geoengineering, 451–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32814-5_62.
Full textConference papers on the topic "Reversal direct shear test"
Moss, Arthur L., and Loren R. Anderson. "Cylinder Direct Shear: A New Test Method." In Geo-Denver 2000. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40515(291)7.
Full textKharanaghi, Mohammad Mahdavi, and Jean-Louis Briaud. "Large-Scale Direct Shear Test on Railroad Ballast." In Geo-Congress 2020. Reston, VA: American Society of Civil Engineers, 2020. http://dx.doi.org/10.1061/9780784482803.014.
Full textKotrocz, Krisztian, and Gyoergy Kerenyi. "Numerical Discrete Element Simulation Of Soil Direct Shear Test." In 31st Conference on Modelling and Simulation. ECMS, 2017. http://dx.doi.org/10.7148/2017-0510.
Full textShrivastava, A. K., K. S. Rao, and Ganesh W. Rathod. "Numerical Simulation of Direct Shear Test on Rock Joint." In GeoCongress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412121.223.
Full textJiang, Yang, and Xiaomou Wang. "Stress-Strain Behavior of Gabion in Compression Test and Direct Shear Test." In Third International Conference on Transportation Engineering (ICTE). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41184(419)241.
Full textStark, Timothy D., Robert H. Swan, and Zehong Yuan. "Ballast Direct Shear Testing." In 2014 Joint Rail Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/jrc2014-3714.
Full textZhao, Xueliang. "Microscale Analysis of Direct Shear Test Using Discrete Numerical Method." In GeoHunan International Conference 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/47633(412)13.
Full textNguyen, Giang. "DETERMINATION OF AN UNCERTAINTY OF DIRECT SHEAR TEST RESULTS OF SOILS." In 13th SGEM GeoConference on SCIENCE AND TECHNOLOGIES IN GEOLOGY, EXPLORATION AND MINING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/ba1.v2/s02.012.
Full textFeuerharmel, C., A. Pereira, W. Y. Y. Gehling, and A. V. D. Bica. "Determination of the Shear Strength Parameters of Two Unsaturated Colluvium Soils using the direct Shear Test." In Fourth International Conference on Unsaturated Soils. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40802(189)96.
Full textLin, Ruijie, Zhixiang Cao, Xinwei Song, Suhua Zhao, and Xiandong Han. "Direct Shear Test Analysis of Coarse-grained Soil in Nyang River Valley Based on Dynamic Shear Area." In 2018 3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/amcce-18.2018.103.
Full textReports on the topic "Reversal direct shear test"
Broome, Scott, Mathew Ingraham, and Perry Barrow. Permeability and Direct Shear Test Determinations of Barnwell Core in Support of UNESE. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1734478.
Full textBroome, Scott, Moo Lee, and Aviva Joy Sussman. Direct Shear and Triaxial Shear test Results on Core from Borehole U-15n and U-15n#10 NNSS in support of SPE. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1488326.
Full textRahman, Shahedur, Rodrigo Salgado, Monica Prezzi, and Peter J. Becker. Improvement of Stiffness and Strength of Backfill Soils Through Optimization of Compaction Procedures and Specifications. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317134.
Full text