Academic literature on the topic 'Reverse engineering activities'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reverse engineering activities.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reverse engineering activities"
Akerdad, Mohammed, Ahmed Aboutajeddine, and Mohammed Elmajdoubi. "Reverse engineering canvas (REC): a visual tool for supporting reverse engineering activities." International Journal on Interactive Design and Manufacturing (IJIDeM) 15, no. 2-3 (August 9, 2021): 249–57. http://dx.doi.org/10.1007/s12008-021-00763-3.
Full textTILLEY, SCOTT R., KENNY WONG, MARGARET-ANNE D. STOREY, and HAUSI A. MÜLLER. "PROGRAMMABLE REVERSE ENGINEERING." International Journal of Software Engineering and Knowledge Engineering 04, no. 04 (December 1994): 501–20. http://dx.doi.org/10.1142/s0218194094000246.
Full textDurupt, Alexandre, Matthieu Bricogne, Sébastien Remy, Nadège Troussier, Harvey Rowson, and Farouk Belkadi. "An extended framework for knowledge modelling and reuse in reverse engineering projects." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, no. 5 (August 9, 2018): 1377–89. http://dx.doi.org/10.1177/0954405418789973.
Full textKim, Eunkyoung, Tanya Gordonov, Yi Liu, William E. Bentley, and Gregory F. Payne. "Reverse Engineering To Suggest Biologically Relevant Redox Activities of Phenolic Materials." ACS Chemical Biology 8, no. 4 (January 24, 2013): 716–24. http://dx.doi.org/10.1021/cb300605s.
Full textHajjej, Fahima, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. "Generic E-Assessment Process Development based on Reverse Engineering." International Journal of Information and Communication Technology Education 13, no. 2 (April 2017): 1–17. http://dx.doi.org/10.4018/ijicte.2017040101.
Full textKim, Eunkyoung, Mijeong Kang, Tanya Tschirhart, Mackenzie Malo, Ekaterina Dadachova, Gaojuan Cao, Jun-Jie Yin, William E. Bentley, Zheng Wang, and Gregory F. Payne. "Spectroelectrochemical Reverse Engineering DemonstratesThat Melanin’s Redox and Radical Scavenging Activities Are Linked." Biomacromolecules 18, no. 12 (November 2017): 4084–98. http://dx.doi.org/10.1021/acs.biomac.7b01166.
Full textCallaghan, Joseph H., Thomas W. Lauer, and Eileen Peacock. "A Method For Reverse Engineering Legacy Accounting Systems." Review of Business Information Systems (RBIS) 2, no. 3 (July 1, 1998): 93–104. http://dx.doi.org/10.19030/rbis.v2i3.5471.
Full textL Edahwati, S Sutiyono, W D Lestari, R D Issafira, W Saputro, A K Faizin, N Adyono, and T P Sari. "Mini Factory Laboratory From Technology Reverse Engineering Ballet Reactors in Struvite Formation." Biomedical and Mechanical Engineering Journal (BIOMEJ) 1, no. 2 (October 19, 2021): 1–5. http://dx.doi.org/10.33005/biomej.v1i2.36.
Full textArcelli Fontana, Francesca, Claudia Raibulet, and Marco Zanoni. "Alternatives to the Knowledge Discovery Metamodel: An Investigation." International Journal of Software Engineering and Knowledge Engineering 27, no. 07 (September 2017): 1097–128. http://dx.doi.org/10.1142/s0218194017500413.
Full textPopişter, Florin, Daniela Popescu, Andrei Șteopan, and Monica Steopan. "Approach for Obtaining Broken Plastic Parts Using Reverse Engineering Tools." Applied Mechanics and Materials 808 (November 2015): 226–32. http://dx.doi.org/10.4028/www.scientific.net/amm.808.226.
Full textDissertations / Theses on the topic "Reverse engineering activities"
Calderón, Saldierna Marco Lino. "A collection of resources for the study of educational reverse engineering activities in engineering design education." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/348553.
Full textLas actividades educativas de ingeniería inversa “AEII” tambien conocidas como “EREA” por su acrónimo en inglés ayudan a los estudiantes de ingeniería de diseño a: Adquirir y desarrollar un conjunto de habilidades que elevan su conocimiento del proceso de diseño; tambien a expandir sus fuentes de inspiración, a situar sus acciones dentro del ciclo de vida de un producto, y a transformar conocimiento teórico en practico. Sin embargo, se detectó que a pesar de que tales actividades despertaban el interés de los profesores del área de ingeniería de diseño ellas estaban o ausentes de sus típicos programas de estudio o no explotadas en su totalidad Después de analizar las causas de ello y determinar que la creación de una colección de recursos para el estudio de las actividades educativas de ingeniería inversa era la mejor forma de acceder a un grupo geográficamente disperso y así intentar cambiar la situación de investigación existente, el desarrollo de tales recursos empezó con la meta de atender tantas inquietudes como fueran posible, de aquellas encontradas siempre que se intentaba implementar “AEII” en programas existentes de ingeniería de diseño Los contenidos seleccionados para formar parte de la colección de recursos, fueron definidos en base a conversaciones iniciales de exploración con expertos en la academia y la industria; en base a la retroalimentación recibida de los artículos presentados en conferencia procedentes de esta investigación doctoral, y de la presentación de resultados intermedios a los revisores preliminares de este proyecto; por tales razones, la información presentada en los diferentes recursos está dirigidas a instructores principiantes de actividades de ingeniería inversa y toma en cuenta no solo las consideraciones técnicas sino también las pedagógicas y administrativas involucradas en el estudio de actividades académicas y su potencial incorporación a un programa existente en ingeniería de diseño Dado que cierta información relevante al tema de investigación ya existía pero estaba dispersa entre varias áreas del conocimiento; en vez de desarrollar todos los temas desde cero nuevamente, se realizó un esfuerzo consciente para examinar la literatura existente y consultar con expertos en el tema, para así integrar y contextualizar toda la información disponible en un estudio coherente que pudiera ser complementado con los resultados originales producidos por esta investigación. Las secciones principales que comprenden la colección de recursos se enumeran a continuación: • Recurso 1: Fundamentos de las Actividades Educativas de Ingeniería Inversa • Recurso 2: Ingeniería Inversa y Aprendizaje • Recurso 3: Interpretaciones Equívocas acerca de la Ingeniería Inversa • Recurso 4: Beneficios de la Ingeniería Inversa • Recurso 5: Una Propuesta de Metodología para Utilizar Análisis de Ingeniería Inversa en la Enseñanza de la Ingeniería de Diseño • Recurso 6: Una Propuesta de Pedagogía para la Enseñanza de Actividades Educativas de Ingeniería Inversa • Recurso 7: Ejemplo de una Actividad Educativa de Ingeniería Inversa en una Cámara Desechable • Recurso 8: Conclusiones y Apuntes Finales • Recurso 9: Recursos Diversos para el Estudio de la Ingeniería Inversa Los recursos fueron escritos utilizando la metodología “DRM” para la investigación en el área de ingeniería de diseño y se contactó a diversas instituciones académicas para saber de su interés en tales recursos, al final 12 instituciones en el Reino Unido; Irlanda, Francia, Dinamarca y Alemania mostraron su interés en el proyecto y accedieron a recibir el documento, ayudando así a cumplir una de las metas principales de esta investigación que fue difundir sus resultados entre estudiosos de la ingenierÍa inversa educativa. Tambien como resultado final de esta investigacion se pueden contar 5 artículos presentados en conferencia y el reporte de trabajo de la estancia de investigación en el extranjero.
Nzetchou, Stéphane. "Méthodologie d'enrichissement sémantique de la CAO dans un environnement de continuité numérique." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2642.
Full textThe digital transition in the manufacturing industry is characterised by a three or even four-decade liability. Some CAO models or digital mock-ups accumulated du ring this period are frozen, i.e. 3D models without a construction tree, which are characterised by missing geometries, due to software changes or versions of 3D formats that have not been updated Reverse engineering activities of CAO models, aiming at obtaining semantically rich 3D models, i.e. parametric and modifiable, made up of construction operations, carrying attributes and metadata, with geometric ru les and constraints, etc., thanks to the use of engineering tools such as CATIA for example, or by approaches based on point clouds coming from a scan for example. But, this is still not satisfactory, because at the end of the reverse engineering activities, we often obtain a solid with a weak semantic representation or an absent construction tree. This leads us to propose in the framework of this thesis work, a methodology for managing information linked to CAO models in order to integrate expert information that we call semantic into these CAO models. The frozen CAO models handled are usually in low-level formats such as STL, IGES or STEP AP203. They are used as input data for our methodology and they can be associated with product definition data, such as a product drawing or documents. The processing of CAO models requires a solution that is able to_manage the digital models and the information they couId possibly integrate. And also the incompleteness of some CAO models that is linked to the 3D format or to the limit of the technology used to obtain the CAO model (e.g. software li mit, 3D format for geometric representation only and that does not support a representation of the construction tree or that cannot graphically represent geometric dimensions and tolerances, etc.). Finally, the relevance of integrated information into CAO model, of a non-geometric nature, during the semantic overlay phase should make it possible, in certain cases, to produce parameterised CAO models, specific to the activity of the application domain. The state of the art, concerning the information representation contained in CAO model and the management of this information, makes it possible to identify techniques and approaches that help the semantic enrichment of CAO models at various levels of granularity. This thesis proposes a methodology named Vaquero For CAO Semantic Enrichment (VFCSE), which is made of three step access, identification and annotation. The aim of this methodology is to integrate missing and standardised information of a non-geometric nature, such as product specifications, tolerances, geometric dimensions, etc., into frozen CAO models. This information will be derived from user needs working on the CAO model and will corne from a semantically rich standard in order to be useful for many operations related to the product life cycle. The enrichment, thanks to this semantically rich standard, will allow for a perpetuation of the information and an efficient reuse of CAO model information. ln order to do this, a CAO model is retrieved from a PDM (Product Data Management) thanks to a user request. lt is visualised in a CAO viewer supporting STL, IGES and STEP AP203 formats. Then, follows a step of identifying components of CAO model. These components can be parts or assemblies. The identified components are annotated based on the STEP AP242 format, which represents the semantically rich standard. These annotations are stored in a standardised ontology, which serves as a minimal basis for carrying all the semantics to be integrated into the CAO mode in order to make the CAO model durable and reusable. The scientific contribution of this work is mainly based on the possibility of reverse engineering by using ontologies to annotate 3D models, according to user needs who has the CAO model at his disposal
Books on the topic "Reverse engineering activities"
Shaw, David, Jasmine Fellows, and Kath Kovac, eds. More Hands-On Science. CSIRO Publishing, 2020. http://dx.doi.org/10.1071/9781486313914.
Full textBook chapters on the topic "Reverse engineering activities"
Parras-Burgos, Dolores, Daniel G. Fernández-Pacheco, Francisco Cavas-Martínez, José Nieto, and Francisco J. F. Cañavate. "Initiation to Reverse Engineering by Using Activities Based on Photogrammetry as New Teaching Method in University Technical Studies." In Lecture Notes in Computer Science, 159–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23560-4_12.
Full textAyvaz, Berk, and Ali Görener. "Reverse Logistics in the Electronics Waste Industry." In Advances in Environmental Engineering and Green Technologies, 155–71. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9723-2.ch008.
Full textHajjej, Fahima, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. "Generic E-Assessment Process Development based on Reverse Engineering." In Learning and Performance Assessment, 236–53. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-0420-8.ch012.
Full textCaldwell, Barrett S. "Teaching Engineers Diplomacy, and Other Lessons for Machine Learning." In Advances in Transdisciplinary Engineering. IOS Press, 2019. http://dx.doi.org/10.3233/atde190137.
Full textVALLE, BRUNO. "THE IMPORTANCE OF PETROPHYSICS IN THE REDEVELOPMENT OF MATURE FIELDS: A CASE STUDY IN THE POTIGUAR BASIN." In Resumos do I Encontro Brasileiro de Petrofísica de Campos Maduros. Editora Realize, 2022. http://dx.doi.org/10.46943/i.ebpcm.2022.01.017.
Full textVALLE, BRUNO. "THE IMPORTANCE OF PETROPHYSICS IN THE REDEVELOPMENT OF MATURE FIELDS: A CASE STUDY IN THE POTIGUAR BASIN." In Resumos do I Encontro Brasileiro de Petrofísica de Campos Maduros. Editora Realize, 2022. http://dx.doi.org/10.46943/i.ebpcm.2022.01.017.
Full textRameswari, M. "Advances in Inventory Control." In Logistics Engineering. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104387.
Full textConteh, Nabie Y., and Quinnesha N. Staton. "The Socio-Economic Impact of Identity Theft and Cybercrime." In Ethical Hacking Techniques and Countermeasures for Cybercrime Prevention, 104–13. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6504-9.ch009.
Full textAhuja, Sachin. "Using the Flipped Classroom to Improve Knowledge Creation of Master's-Level Students in Engineering." In Handbook of Research on Instructional Systems and Educational Technology, 326–39. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2399-4.ch028.
Full textAhuja, Sachin. "Using the Flipped Classroom to Improve Knowledge Creation of Master's-Level Students in Engineering." In Computer-Assisted Language Learning, 1079–92. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7663-1.ch051.
Full textConference papers on the topic "Reverse engineering activities"
Cheers, Hayden, and Yuqing Lin. "Reverse Engineering UML Sequence Diagrams for Program Comprehension Activities." In 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). IEEE, 2020. http://dx.doi.org/10.1109/citisia50690.2020.9371851.
Full textSoh, Zephyrin, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol. "Towards understanding how developers spend their effort during maintenance activities." In 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE, 2013. http://dx.doi.org/10.1109/wcre.2013.6671290.
Full textAsghar, Muhammad Rizwan, and Andrew Luxton-Reilly. "Teaching Cyber Security Using Competitive Software Obfuscation and Reverse Engineering Activities." In SIGCSE '18: The 49th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159450.3159489.
Full textCurtis, Shane K., Christopher A. Mattson, and Stephen P. Harston. "On Barriers to Reverse Engineering Mechanical Components." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28610.
Full textRemy, Sébastien, Florent Laroche, Alexandre Durupt, and Alain Bernard. "Knowledge Based Reverse Engineering Methodology." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82927.
Full textCurtis, Shane K., Stephen P. Harston, and Christopher A. Mattson. "A Generic Formulaic Characterization of the Time to Reverse Engineer the Tolerances of a Product." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13123.
Full textFuehne, Joseph P. "Laboratory Activities for a Dimensional Metrology Class." In NCSL International Workshop & Symposium. NCSL International, 2014. http://dx.doi.org/10.51843/wsproceedings.2014.23.
Full textAli, Salam, Alexandre Durupt, Pierre Antoine Adragna, and Nadège Troussier. "3D Information Management Enabling Manufacture Engineering." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82941.
Full textOkudan, Gu¨l E., and Susan Mohammed. "An Investigation on the Students’ Perception of Dissection Effectiveness in a Redesign Context." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50125.
Full textKlaus, Matthias, Stefan Holtzhausen, Christine Schöne, and Ralph Stelzer. "Topology-Oriented Deformation of FE-Meshes in Iterative Reverse Engineering Processes." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82994.
Full text