Dissertations / Theses on the topic 'Reverse osmosis desalination'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Reverse osmosis desalination.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Harrison, Don. "Solar powered reverse osmosis desalination for remote communities." Thesis, Harrison, Don (1989) Solar powered reverse osmosis desalination for remote communities. Honours thesis, Murdoch University, 1989. https://researchrepository.murdoch.edu.au/id/eprint/40085/.
Full textHoffman, Anton Michael. "Design guidelines for a reverse osmosis desalination plant / Anton Michael Hoffman." Thesis, North-West University, 2008. http://hdl.handle.net/10394/4211.
Full textThesis (M.Ing. (Nuclear Engineering)--North-West University, Potchefstroom Campus, 2009.
Xie, Zhangwang. "Polysaccharide fouling in reverse osmosis and forward osmosis desalination and its alleviation." Thesis, Xie, Zhangwang (2015) Polysaccharide fouling in reverse osmosis and forward osmosis desalination and its alleviation. PhD thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/31172/.
Full textAshhuby, Bashir Ali. "Biofouling studies on reverse osmosis desalination of hypersaline waters." Thesis, University of Sheffield, 2007. http://etheses.whiterose.ac.uk/3599/.
Full textHarrison, Don. "Solar powered reverse osmosis desalination: Technology for remote communities." Thesis, Harrison, Don (2001) Solar powered reverse osmosis desalination: Technology for remote communities. PhD thesis, Murdoch University, 2001. https://researchrepository.murdoch.edu.au/id/eprint/52404/.
Full textMartinez, Hiroki. "Design of a desalination plant : aspects to consider." Thesis, University of Gävle, Faculty of Engineering and Sustainable Development, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-6995.
Full textOne of the main problems our actual society faces is the shortage of water. Despite the great effort made by authorities and researchers, multiple countries with poor economic resources are experiencing serious difficulties derivative of water scarcity. Desalination provides a feasible solution for inland and coastal areas. Through literature and reviewed articles analysis the reader will meet the actual issues regarding designing a desalination plant, and more over with reverse osmosis (RO) processes, which are the main arguments of this work. One of the big deals is the environmental concern when handling the concentrate disposal. Another important point about desalination processes is the increasingly interest in coupling the units with renewable energy sources (RES). The results point out that regardless of the efforts made until today, additional achievement is required in fields such as membrane’s structure materials for RO method, concentrate disposal systems, governmental water policies review and update, and greater distinction researches between brackish water and seawater RO desalination processes. Taking into consideration the previous outcomes it is finally concluded that some particular steps must be accomplished when beginning a desalination plant design.
Thomson, A. Murray. "Reverse-osmosis desalination of seawater powered by photovoltaics without batteries." Thesis, Loughborough University, 2003. https://dspace.lboro.ac.uk/2134/10701.
Full textWardeh, Sawsan. "Numerical modelling of reverse osmosis channels: application in desalination industry." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490836.
Full textRobinson, Roderick Q. "Desalination of groundwater using reverse osmosis coupled to a windmill." Thesis, Robinson, Roderick Q. (1990) Desalination of groundwater using reverse osmosis coupled to a windmill. Masters by Research thesis, Murdoch University, 1990. https://researchrepository.murdoch.edu.au/id/eprint/52405/.
Full textBermudez-Contreras, Alfredo S. "An energy recovery device for small-scale seawater reverse osmosis desalination." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6098.
Full textMartinetti, C. Riziero. "Membrane contractor processes for desalination of brackish water reverse osmosis brines /." abstract and full text PDF (UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1455665.
Full text"May, 2008." Includes bibliographical references (leaves 35-38). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2008]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Zhao, Yu. "Reverse osmosis desalination in a mini renewable energy power supply system." Thesis, Curtin University, 2006. http://hdl.handle.net/20.500.11937/2099.
Full textZhao, Yu. "Reverse osmosis desalination in a mini renewable energy power supply system." Curtin University of Technology, Dept. of Electrical and Computer Engineering, 2006. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=18552.
Full textModelling and simulation of the system components in MATLABSimulink is presented, together with a discussion of the control systems modelling and design procedure, in which the aim was to improve the efficiency of the reverse osmosis system. Simulations show the designed reverse osmosis system with Proportional Integral and Derivative (PID) controller has better performance than other controllers. This consequently leads to a lower overall cost of the water, as well as reducing full maintenance cost of the electric drives in the reverse osmosis unit. Additionally, the configuration of the remote control system through General Package Radio System (GPRS) network is depicted. After the PID control algorithm was programmed into the Programmable Logic Controller (PLC), system experiments were carried out in short durations and long durations. System performance was monitored and experimental results prove that the new control strategy applied increase the water productivity and is able to improve the system efficiency up to 35%. Based on the data obtained from the simulations and experiments, Mundoo Island was chosen to be the location for a case study. The electric load profile of the island was derived from the Island Development Committee in Mundoo.
A water demand profile was created and modelled in Matlab to be the input of the reverse osmosis system. The electric load of the reverse osmosis system was generated from Matlab simulation. This result was entered in Hybrid Optimisation Model for Electric Renewables (HOMER) simulator. Having the designed RO unit as one of the electric loads, the entire remote area power supply (RAPS) system was tested in simulations which shows the energy cost is AUS$0.174 per kWh, lower than the Island Development Committee budget estimation of AUS$0.25 per kWh. The cost of the water treatment is very promising at AUS$0.77 per m3.
MendonÃa, Doglasse Ernesto. "Osmosis reverse plant powered by photovoltaic modules with MPPT and self regulated pressure valve." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16455.
Full textThis project presents a brackish water desalination plant via Reverse Osmosis (RO) powered by Photovoltaic Modules (PV) with Maximum Power Tracking (MPPT) and a self â regulating pressure valve. The developed unit is installed on Alternative Energy Laboratory (LEA), which is located on the campus of PICI at Federal University of CearÃ. To extract maximum power from the PV module a Buck type converter was developed for this application. The Incremental Conductance algorithms (IncCond) is used. The MPPT technique was simulated, tested and validated, showing an efficiency of 86.8%. An innovation in this plant is the use of a self-regulating pressure valve installed in the concentrate output, which ensures a smaller pressure and power variation in the pump that is responsible for pressurizing the water to the membranes. The technical feasibility of the RO plant is checked in two phases: one without the presence of the self- regulating pressure valve in the concentrated output and other with the self-regulating pressure valve in the concentrated output. The plant is tested for two salinity levels 1000 and 1500 mg/L of TDS (Total Dissolved Solids) levels. These salinity levels chosen are commonly found in most brackish water wells of the semi-arid region of Northeastern Brazil. For operation without selfregulating pressure valve the obtained average values are: recovery rate 8.03% (relation between permeate flow and feed water flow), 151.7 L of daily production of drinking water with 130 mg/L of TDS, specific energy consumption of 2.68 kWh/m3. For operation with self-regulating pressure valve the obtained average values are: recovery rate 8.14%, 175.3 L of daily production of drinking water with 120 mg/L of TDS, specific energy consumption of 2.56 kWh/m3. Thus the configuration system using the self â regulating valve showed better results
O presente projecto apresenta uma planta de dessalinizaÃÃo de Ãgua salobra por osmose reversa (OR) acionada por mÃdulos fotovoltaicos (FV) com seguimento de potÃncia mÃxima (MPPT - Maximum Power Point Tracking) e vÃlvula autoreguladora de pressÃo. A planta desenvolvida està instalada no LaboratÃrio de Energias Alternativas (LEA), situado no Campus do PICI da Universidade Federal do CearÃ. Para extraÃÃo da mÃxima de energia do mÃdulo FV foi desenvolvido um conversor do tipo Buck, usando a tÃcnica CondutÃncia Incremental (CondInc). A tÃcnica de MPPT foi simulada, testada e validada, apresentando uma eficiÃncia de 86,8% no seguimento do ponto de potÃncia mÃxima. Uma inovaÃÃo na planta proposta à o uso de uma vÃlvula autoreguladora de pressÃo instalada na saÃda do concentrado, que garante uma menor variaÃÃo de pressÃo e corrente eletrica na motobomba responsÃvel por pressurizaÃÃo da Ãgua para as membranas. A planta de OR foi testada em duas etapas: uma sem a presenÃa da vÃlvula auto-reguladora de pressÃo e a outra com a vÃlvula, para uma Ãgua de alimentaÃÃo entre os nÃveis de salinidade de 1000 e 1500 mg/L de STD (SÃlidos Totais Dissolvidos). Estes nÃveis de salinidade adotados sÃo geralmente encontrados em poÃos com Ãgua salobra do semiÃrido do Nordeste do Brasil e noutros casos maior 1500 mg/L de STD. Para a operaÃÃo sem a vÃlvula autoreguladora de pressÃo foram obtidos os seguintes valores mÃdios: taxa de recuperaÃÃo 8,03%, produÃÃo de Ãgua potÃvel de 151,7 L/dia com 130 mg/L de STD, consumo especÃfico de energia de 2,68 kWh/m3. Para a operaÃÃo com a vÃlvula autoreguladora de pressÃo foram obtidos os seguintes valores mÃdios: taxa de recuperaÃÃo 8,14%, produÃÃo de Ãgua potÃvel de 175,3 L/dia com 120 mg/L de STD, consumo especÃfico de energia de 2,56 kWh/m3. No entanto a configuraÃÃo da planta operando com a vÃlvula autoreguladora de pressÃo apresenta melhores resultados relativamente a operaÃÃo sem a vÃlvula.
Hashim, Ahmed. "Foulants investigations and performance modelling analyses in seawater reverse osmosis (SWRO) desalination." Thesis, University of Newcastle Upon Tyne, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489274.
Full textDe, Paz Rowel. "On-farm desalination: Halophyte and evaporation pond for reverse osmosis brine disposal." Thesis, De Paz, Rowel (2019) On-farm desalination: Halophyte and evaporation pond for reverse osmosis brine disposal. Honours thesis, Murdoch University, 2019. https://researchrepository.murdoch.edu.au/id/eprint/54845/.
Full textRoy, Choudhury Shreya. "Synthesis, Characterization and Structure - Property Relationships of Post - sulfonated Poly(arylene ether sulfone) Membranes for Water Desalination." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/99381.
Full textPHD
Kitley, David. "Exploring renewable energy powered reverse osmosis desalination plants in South Africa: a costing analysis of Reverse Osmosis desalination plants powered by renewable energy and their potential for South Africa." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11678.
Full textFaze, Natasha Ranjit. "Life Cycle And Economic Analysis Comparing Microbial Desalination Cell And Reverse Osmosis Technologies." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428934798.
Full textCorral, Andrea F. "Alternative Technologies for Inland Desalination." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333122.
Full textYenal, Umur. "MAXIMIZING WATER RECOVERY DURING REVERSE OSMOSIS (RO) TREATMENT OF CENTRAL ARIZONA PROJECT (CAP) WATER." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195247.
Full textSoliz, Deserié H. "Production of the Forage Halophyte Atriplex lentiformis on Reverse Osmosis Brine." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202737.
Full textGilabert, Oriol Guillem. "Optimization of ultrafiltration membrane cleaning processes. Pretreatment for reverse osmosis in seawater desalination plants." Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/108954.
Full textThis thesis gives an overview on how to improve efficiency of the ultrafiltration filtration process in seawater desalination. This is achieved by optimizing different cleaning processes such as the backwash and the chemical enhanced backwash. Key success factors rely on reducing the number of backwash steps, improving the backwash frequency, using reverse osmosis brine for backwashing and reducing the chemical consumption. A new methodology to analyze these cleanings cycles is proposed through modeling the process. Different fibers types are also analyzed according to its permeability and its fouling tolerance. A methodology to prevent reverse osmosis chlorination from upstream chemical enhanced backwash cleaning is presented. All the findings are validated through real plant operating data. The proposed improvements increase the process efficiency to 98% and lead to a 7% cost reduction in the ultrafiltration process.
Zhao, Lin. "Advanced Reverse Osmosis Membranes for Desalination and Inorganic/Polymer Composite Membranes for CO2 Capture." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1405729817.
Full textNasir, Subriyer. "Membrane performance and build-up of solute during small scale reverse osmosis operation." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/590.
Full textJayasekara, Buddhika. "ASSESSMENT OF DESALINATION NEEDS AND APPROPRIATE TECHNOLGIES FOR SRI LANKA." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24734.
Full textFernandes, Ângela Soares Ramos. "Adequabilidade da energia solar para a produção autónoma de água dessalinizada." Master's thesis, ISA, 2013. http://hdl.handle.net/10400.5/6482.
Full textThe issue of water scarcity has been felt with more intensity in the arid and semi-arid regions. These regions are characterized by climate variability and recurrent droughts, affecting the socio-economic development of these areas. In remote areas with limited water resources, desalination is used as a primary source for drinking water supplies to communities. Between the various technologies available in desalination, inverse osmosis is the most used technology for drinking water production. Photovoltaic solar energy solves the issue of electrification in rural areas, becoming an added value since it allows achieve energetic autonomy for the conventional system. This paper aims to assess the potential of decentralized desalination using solar energy applied to small scale. To study the applicability and viability of the technology is realized pre-sizing of the reverse osmosis system associated with the photovoltaic system to be installed in a rural area in Cabo-Verde. The validation of this combination of technologies and their implementation at the site requires the guarantee of sustainable development for communities. The obtained results show the viability of drinking water autonomous production which ensures the needs of population.
Eriksson, Olof. "Techno Economic Analysis of Reverse Osmosis Combined with CSP + PV in Kuwait." Thesis, Högskolan Dalarna, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-34521.
Full textNasir, Subriyer. "Membrane performance and build-up of solute during small scale reverse osmosis operation." Curtin University of Technology, Department of Chemical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17394.
Full textThe results from feedwater runs indicated that initial sodium chloride and calcium carbonate in feed water and applied pressure affects the overall membrane performance. However, there is no significant effect on membrane performance for sodium chloride with concentration below 1200 mg/L and applied pressure lower than 2250 kPa. Applied pressure appears to have an impact on build-up of sodium and calcium on the membrane surface for pressures greater than 2750 kPa. For typical small-scale RO system used in this experiment, build-up of calcium will slightly decrease with given pressure caused by the characteristic of membrane that easily removes the divalent ions. The osmotic pressure of solution also strongly affects the permeate flow rate in particular for relatively higher sodium concentration (> 2500 mg/L). As a consequence of higher osmotic pressure, zero permeate flux is achieved when sodium chloride concentration was greater than 5000 mg/L and applied pressure lower than 1750 kPa. Results also indicated that fouling might pose a potential problem in small-scale RO operation. In order to investigate the membrane performance, experiments with secondary effluent samples were also performed. Results indicated that water recovery percentages and permeate flux also linearly increase with applied pressure. However, effectiveness of membrane decreases less than 98% otherwise build-up of solute tends to increase. It is suggested that lower values of the water recovery percentage (WRP) and permeate flux (Jw) are caused by the characteristic of secondary effluent that have high-suspended solids, organic carbon, and minerals. Further, the membrane performance also examined with ground water as feed water sample.
Results showed that both water recovery percentage and permeate flux linearly increased with operating pressure. However, intensive pretreatment are required as a result of higher concentration of humic acid and iron in raw feed. Percentages of ion rejection for sodium and calcium are greater than 98 and 99% respectively. The high ion rejections are mainly due to the characteristics of groundwater with low TDS and EC. Sodium and calcium build-up in a small-scale RO system considered appears to be affected by the applied pressure. Build-up of solute in small-scale of RO system has been predicted using the empirical model proposed in this work. Two ions namely sodium and calcium in feed water considered as predominant ions responsible for fouling and scaling on the membrane surface. Four main parameters namely, applied pressure (P), permeate flux (Jw), membrane resistance (Rm), and feed concentration (Cf) are considered which strongly affect the overall membrane performance. The empirical correlations derived from experimental observation among these parameters can be expressed as follows: In Md NaCI = O. 77 In P + 0.67 In Jw + 0.19 In Rm + 0.171n Cf In Md CaCO3= 0.96 In P + 0.75 In Jw + 0.2 In Rm - 0.07 In Cf
The empirical models proposed in this thesis may be useful for predicting the buildup of solute on the membrane surfaces. In the present work, an attempt has been made to estimate the energy consumption and unit cost for desalting of different feed water samples in a small-scale RO system. In RO plants, unit cost of water production from feed water is primarily governed by the energy required for pumping raw water. Estimates of specific energy consumption (SEC) for desalting of sodium chloride, combined sodium and calcium carbonate solutions were found to be in the range of 0.79 - 3.21 and 0.81 - 3.22 kwh/m3 respectively. For groundwater and secondary effluent, they are estimated to 0.63 - 1.71 and 0.79 - 2.02 kWh/m3 respectively. Moreover, energy consumption for different feed water samples was used to estimate the unit cost for water production. Estimation of unit costs for combined sodium chloride and calcium carbonate solution, groundwater, and secondary effluent runs are $2.06 - 3.22, $1.98 - 2.57 and $1.56- 2.66 respectively. In this work, unit cost is still higher due to greater energy consumption .by the pumping system which is required in a small-scale RO operation. Based on the experimental results, it appears that the characteristics of feed water samples affect the membrane performance and their effects must be taken into account in the design of RO units so as to reduce the unit cost for water production.
The findings from the present experimental and modelling work are of practical significance in not only providing the knowledge base in the area of desalination but also paves the way for developing tools for the prediction of build-up of solutes on membrane surface in full scale reverse osmosis operations.
Clarke, Daniel. "Stand-alone solar-pv hydrogen energy systems incorporating reverse osmosis." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2015. https://ro.ecu.edu.au/theses/1750.
Full textHou, Novalie, and Sofie Jiang. "Concentrator photovoltaics combined with reverse osmosis and membrane distillation for high-efficiency desalination and electricity production." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282908.
Full textDetta projekt är en kandidatuppsats och syftar till att studera ett integrerande system bestående av koncentrerade solceller (CPV), omvänd osmos (RO) och membrandestillation (MD) för vattenavsaltning och rening. Rapporten börjar med en introduktion om behovet av effektiv avsaltning av vatten. Relevant litteratur har granskats för att bygga upp den grundläggande förståelsen för CPV, RO och MD. Därefter gjordes en klassificering av CPV. För att få en mer omfattande förståelse av CPV valdes två olika typer av CPV /T för en djupare undersökning. Kostnadseffektiviteten för varje CPV analyserades, när dessa var integrerade med RO- och MD-system. Resultatet visar sig att det tyvärr inte var ekonomiskt fördelaktigt att ha med MD i det integrerade systemet. Anledningen bakom detta var det omfattande termiska energibehovet för MD. Andra avgörande faktorer, såsom plats och systemtyp diskuterades tillika. Slutligen avslutades rapporten med förslag på förbättringar och områden för vidare studier.
Rosa, Daniel Jordão de Magalhães. "Sistemas fotovoltaicos domiciliares de dessalinização de água para consumo humano: um estudo de sua viabilidade e configurações." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/86/86131/tde-07032014-161629/.
Full textMuch of the rural population of the Brazilian Semiarid region suffers from problems related to access of improved water quality. The exploitation of ground water is the main alternative for water supply solutions regarding this population, but often the boreholes are away from power lines. The region has abundant solar source and therefore this problem could be overcome with the use of photovoltaic pumping systems. Beyond the issue of energy for operation of the borehole systems, considering that most of the semiarid region is located on crystalline shield, many boreholes have water with high level of salinity, which hinder their use for drinking water supply solutions, as the population rejects the water because of its taste. This study aims to determine whether the adaptation of commercially available small household desalinization systems adapted to photovoltaic systems can enhance the diffusion of photovoltaic pumping systems of boreholes with high concentrations of dissolved salt, by proposing this water supply solution as an alternative for water supply systems in rural areas with problems of salinization of the main water sources. The proposed technical solution consists of a dual water supply system with the use a point of use water treatment for human consumption. It was found that desalination systems available on the market can operate coupled to photovoltaic generators and used to supply drinking water from brackish water.
Sassi, Kamal M. "Optimal scheduling, design, operation and control of reverse osmosis desalination : prediction of RO membrane performance under different design and operating conditions, synthesis of RO networks using MINLP optimization framework involving fouling, boron removal, variable seawater temperature and variable fresh water demand." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5671.
Full textShames, Elhashmi Adel. "An investigation into the effect of different types of antiscalant on desalination reverse osmosis (Ro) membrane flux." Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/2609.
Full textRecently much research and development has been done into the creation of desalination systems in South Africa, with particular emphasis on the commercialisation of desalination plants that serve local communities. This has been successful - there are currently plants running at Bitlerfontien, Bushmans River Mouth and Robben Island - although membrane fouling and scaling remains a problem associated with membrane desalination, as it does worldwide The aim of this study was to Investigate the performance of different type of antiscalants on artificially scaled membranes which we prepared inside the lab as well as on scaled membranes which were used in pilot plant. We used two type of anti-sealants in our research: Vitec 3000 and Zinc ions. The effects of these anti-sealants on the membrane were determind and the RO performances of the treated and untreated membrane compared. A suitable autopsy procedure was established and was then used to autopsy the XLE 4040 membranes. The autopsied membranes were characterized by scanning electron microscopy (SEM) and optical microscopy (OM). The SEM and OM results clearly showed that scaling had taken place: deposits were observed for both the shell and core samples, which were not present in the images of the untreated membrane, especially when looking at high SEM images magnification. Results also showed that the anti-sealants reduced the fouling and scaling on the membrane surface. As a result, the membrane rejection improved. Rejection and flux results indicated that commercial anti-sealant was more effective in preventing scaling than the Zinc ions. For Vitec anti-sealant case, the flux was in steady state at 36.8 Imh (5% less) after 5 hours compared to around 35 Imh (8% less) for zinc ions case. In addition; SEM images showed that less deposited particles are formed when the membrane was treated with commercial anti-sealant.
Reed, Elizabeth Anne S. M. Massachusetts Institute of Technology. "The design of a controllable energy recovery device for solar powered reverse osmosis desalination with experimental validation." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74940.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 84-86).
The purpose of this thesis is to design and validate a controllable energy recovery device with application to photovoltaic powered reverse osmosis (PVRO). The energy consumption of a reverse osmosis plant depends significantly on the efficiency of its energy recovery process. This work presents a concept for a controllable energy recovery process, so that a system can operate optimally based on the incoming water and power characteristics. The design presented here uses a variable nozzle and a Pelton wheel to recover energy from the high pressure concentrated brine exiting the reverse osmosis membrane. The components are designed, analytically modeled using fundamental engineering principles, and experimentally tested. The experimental data is then used to check the validity of the formulated concept models. This research encompasses the modeling and testing of a variable nozzle using a needle valve to control the flow through the nozzle, and also of a Pelton bucket, to examine the effectiveness of the momentum transfer from a high velocity jet to the Pelton wheel. This research is done to examine the feasibility of this concept for potential implementation on a full scale PVRO system. The component validation is performed to prove that the concept is effective and competitive with other options.
by Elizabeth Anne Reed.
S.M.
Qiu, Tianyu. "Desalination of brackish water by a batch reverse osmosis desalink system for use with solar thermal energy." Thesis, Aston University, 2014. http://publications.aston.ac.uk/24333/.
Full textNagaraj, Veena. "Investigation and control of biofouling in seawater reverse osmosis desalination membranes by bacteria and their extracellular polysaccharides." Thesis, Nagaraj, Veena (2017) Investigation and control of biofouling in seawater reverse osmosis desalination membranes by bacteria and their extracellular polysaccharides. PhD thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/37865/.
Full textMondamert, Leslie. "Seawater desalination, autopsy and cleaning of reverse osmosis membranes recovered from full-scale plants and pilot units." Poitiers, 2010. http://www.theses.fr/2010POIT2264.
Full textOLIVEIRA, Arleide Ricarte de. "Desempenho de um sistema de dessalinização via osmose inversa usando energia não-convencional, sem a utilização de acumuladores." Universidade Federal de Campina Grande, 2007. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1720.
Full textMade available in DSpace on 2018-09-14T11:45:03Z (GMT). No. of bitstreams: 1 ARLEIDE RICARTE DE OLIVEIRA - TESE (PPGEP) 2007.pdf: 4819651 bytes, checksum: 1cc38913961211c387807eb81998c764 (MD5) Previous issue date: 2007-08-31
Capes
A falta de água potável em algumas localidades do mundo, mais precisamente no semi-árido, é um problema de caráter secular, agravado pela poluição, distribuição irregular e existência de águas subterrâneas de utilização bastante limitada por causa dos altos índices de salinidade. Por outro lado, essas regiões possuem um grande potencial de irradiação solar que favorece a utilização de painéis fotovoltaicos, principalmente em locais distante da rede elétrica. Visando melhorar a qualidade de vida e minimizar o problema da falta de água potável nessas regiões, esse trabalho tem como objetivo estudar o desempenho de um protótipo de equipamento para fins de dessalinizar águas salobras via osmose inversa, fazendo uso de um gerador fotovoltaico com a utilização de um circuito eletrônico, no qual substitui acumuladores de carga (baterias). Com o uso do circuito eletrônico foi possível produzir água potável sem a necessidade da utilização de acumuladores de carga (baterias) e sem danificar o motor-bomba. A ausência do banco de baterias proporciona uma redução dos custos e da necessidade de manutenção; mas o sistema torna-se subordinado às condições instantâneas da radiação solar e da temperatura ambiente. Esse sistema foi instalado no Laboratório de Referência em Dessalinização (LABDES), na Universidade Federal de Campina Grande. O desempenho do sistema foi avaliado com soluções de cloreto de sódio com concentração de 1.000 mg/L e 2.500 mg/L e água de poço com concentração de 3.800 mg/L. As variáveis de medidas, como: tensão, corrente, vazão e pressão foram obtidas em tempo real no Software Data Aquisition, através de sensores elétricos. A partir desses dados foram avaliados os seguintes parâmetros: potência elétrica, vazão do permeado e do concentrado, recuperação e consumo de energia por m3 de água produzida. As condições meteorológicas e as concentrações da água de alimentação influenciam diretamente na pressão, e consequentemente na produção de água. Mesmo com a grande variação de tensão em função da irradiação solar, o sistema mostrou condições técnicas de produzir 0,25 m3/h de água dessalinizada. A pressão máxima obtida foi de 8,2 kgf/cm2. O balanço econômico, que representa o custo-benefício de implantação, operacional e manutenção para atender comunidades isoladas, mostrou que o menor custo de água dessalinizada é obtido quando o sistema de dessalinização é instalado em localidade na qual já possui o poço tubular e um local para servir de abrigo para o sistema de dessalinização. Para essas localidades é viável o uso de painéis fotovoltaicos.
The lack of drinking water in some places of the world, more precisely in the semi-arid region of Brazil, is an old problem, worsened by the pollution, irregular distribution and high salinity of underground waters. On the other hand, those areas possess a great solar irradiation rate that favors the use of photovoltaic panels, mainly where the electric net is not available. Seeking to improve the life quality and to minimize the problem of the lack of drinking water in those areas, the objective of this work is to study and evaluate an osmosis reverse desalination system, using photovoltaic solar energy coupled to an electronic circuit. This electronic circuit replaces the use of batteries without damaging the motor-bomb. The absence of batteries provides a reduction of the cost and maintenance need; but the system is subordinated to the instantaneous conditions of the solar radiation. This system was installed at the Reference Laboratory of Desalination (LABDES) in the Federal University of Campina Grande. The system was evaluated with sodium chloride solutions of 1,000 and 2,500 mg/L NaCl concentrations, and a well water of 3,800 mg/L TDS concentration. The meteorological conditions and the concentrations of the feeding water influence directly the applied pressure and consequently the permeate production. Even with the intermittent energy delivered by the solar photovoltaic panels, the desalination system showed good technical conditions to produce 0.25 m3/h of potable water. The economical statements , that the implantation cost-benefit represents, operational and maintenance to take care of isolated communities, showed that the lesser desalinizaded water cost is gotten when the desalination system is installed in locality in which already possesss the well and a place to serve of shelter for the desalination system. For these localities the use of photovoltaics panels is viable.
Seo, Joseph. "SURFACE MODIFICATIONS OF REVERSE OSMOSIS MEMBRANES FOR REMOVAL OF BROMIDE AND REDUCTION OF FOULING." DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2169.
Full textOliveira, Fernando Freitas de. "Avaliação de filtros lentos de areia como pré-tratamento para o controle de biofouling em plantas de osmose reversa aplicadas na dessalinização de água do mar." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/87/87131/tde-12062013-143346/.
Full textThis study evaluated the performance of a pretreatment system for seawater comprising of a slow sand filter, with a preliminary stage of filtration by disc filtration system. The system proved to be efficient in removing factors causing fouling in reverse osmosis membranes removing around 97% of the total suspended solids present in the raw water, and yielding a filtrate with turbidity between 0.1 and 0.2 NTU. The bacterial concentrations and AOC, main factors causing biofouling formation, were both reduced by about 90%. In seawater reverse osmosis systems, pretreatment of the feeded water is the main strategy to control biofouling, which is formed by the establishment of biofilms on a membrane surface. The biofouling formation produces an impact in the performance of the reverse osmosis process and operating costs.
Benecke, Jan [Verfasser], and Mathias [Akademischer Betreuer] Ernst. "Gypsum scaling during reverse osmosis desalination − characterization and effects of natural organic matter / Jan Benecke ; Betreuer: Mathias Ernst." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2018. http://d-nb.info/117190018X/34.
Full textQadar, Rebeen Nasruldeen. "Investigations into the effectiveness of large size membrane elements for RO desalination RO: water treatment by reverse osmosis." Thesis, Curtin University, 2013. http://hdl.handle.net/20.500.11937/2365.
Full textAl-Shayji, Khawla Abdul Mohsen. "Modeling, Simulation, and Optimization of large-Scale Commercial Desalination Plants." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30462.
Full textPh. D.
Lindkvist, Jonas. "Social, Economical and Technical Evaluation of a reverse osmosis drinking water plant in the Stockholm Archipelago." Thesis, KTH, Industriell ekologi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32777.
Full textwww.ima.kth.se
Rebello, de Andrade Filipe. "Hydrogen as energy backup for the Hexicon : A case study on Malta." Thesis, KTH, Energiteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118853.
Full textOdeh, Ibrahim Khalil. "Modelling, field data analysis and economics of photovoltaic water pumps and the prospects for integrating desalination using reverse osmosis." Thesis, University of Ulster, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419108.
Full textGreco, Francesca. "Design of an innovative wind pile for water desalination." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textAsempour, Farhad. "Fabrication and Characterization of Novel Environmentally Friendly Thin Film Nanocomposite Membranes for Water Desalination." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36737.
Full textRighton, Russel. "Development of an artificial neural network model for predicting the performance of a reverse osmosis (RO) unit." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/1684.
Full text