To see the other types of publications on this topic, follow the link: Reversed micelles.

Journal articles on the topic 'Reversed micelles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reversed micelles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mwalupindi, Averrin G., Rezik A. Agbaria, and Isiah M. Warner. "Synthesis and Characterization of the Surfactant Terbium 3-[[1,2-Bis-[[(2-Ethylhexyl)Oxy]Carbonyl]Ethyl]Thio]Succinate as a Reagent for Determining Organic Analytes." Applied Spectroscopy 48, no. 9 (1994): 1132–37. http://dx.doi.org/10.1366/0003702944029497.

Full text
Abstract:
The surfactant terbium 3-[[1,2-bis[[(2-ethylhexyl)oxy]carbonyl]ethyl]thio]succinate has been synthesized and characterized by use of its absorption, luminescence, and microviscosity properties. In the presence of small amounts of water, this surfactant aggregates in cyclohexane to form reversed micelles containing Tb(III) counterions. The critical reverse micelle concentration has been determined to be 5.7 × 10−5 M with the use of an optical probe. Organic analytes solubilized in reverse micelles have been detected indirectly with the use of the luminescence characteristics of Tb(III) counteri
APA, Harvard, Vancouver, ISO, and other styles
2

Gagliardi, Mariacristina, Agnese Vincenzi, Laura Baroncelli, and Marco Cecchini. "Stabilized Reversed Polymeric Micelles as Nanovector for Hydrophilic Compounds." Polymers 15, no. 4 (2023): 946. http://dx.doi.org/10.3390/polym15040946.

Full text
Abstract:
Small hydrophilic drugs are widely used for systemic administration, but they suffer from poor absorption and fast clearance. Their nanoencapsulation can improve biodistribution, targeted delivery, and pharmaceutical efficacy. Hydrophilics are effectively encapsulated in compartmented particles, such as liposomes or extracellular vesicles, which are biocompatible but poorly customizable. Polymeric vectors can form compartmental structures, also being functionalizable. Here, we report a system composed of polymeric stabilized reversed micelles for hydrophilic drugs encapsulation. We optimized t
APA, Harvard, Vancouver, ISO, and other styles
3

Huppertz, Thom, and Cornelis G. de Kruif. "Disruption and reassociation of casein micelles during high pressure treatment: influence of whey proteins." Journal of Dairy Research 74, no. 2 (2007): 194–97. http://dx.doi.org/10.1017/s0022029906002263.

Full text
Abstract:
In the study presented in this article, the influence of added α-lactalbumin and β-lactoglobulin on the changes that occur in casein micelles at 250 and 300 MPa were investigated by in-situ measurement of light transmission. Light transmission of a serum protein-free casein micelle suspension initially increased with increasing treatment time, indicating disruption of micelles, but prolonged holding of micelles at high pressure partially reversed HP-induced increases in light transmission, suggesting reformation of micellar particles of colloidal dimensions. The presence of α-la and/or β-lg di
APA, Harvard, Vancouver, ISO, and other styles
4

Burns, Janet L., and Yeshayahu Talmon. "Cryo-TEM of micellar solutions." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 500–501. http://dx.doi.org/10.1017/s0424820100127141.

Full text
Abstract:
Micelles are aggregates of amphiphilic molecules, i.e., molecules that have both a hydrophilic and a hydrophobic (lyophilic) moiety. These aggregates, in equilibrium with free molecules, may attain various shapes: spherical, spheroidal, or cylindrical, depending on concentration, temperature, and presence of other solutes in the system. In all of these aggregates the hydrophilic “heads” are in contact with water, and the hydro-phobic “tails” form a non-aqueous domain within the micelle. When the solvent is non-aqueous the situation is reversed; “inverted micelles” form where the hydrophobic “t
APA, Harvard, Vancouver, ISO, and other styles
5

Klyachko, Natalia L., Natalia G. Bogdanova, Andrei V. Levashov, and Karel Martinek. "Micellar Enzymology: Superactivity of Enzymes in Reversed Micelles of Surfactants Solvated by Water/Organic Cosolvent Mixtures." Collection of Czechoslovak Chemical Communications 57, no. 3 (1992): 625–40. http://dx.doi.org/10.1135/cccc19920625.

Full text
Abstract:
Catalytic properties of α-chymotrypsin, peroxidase and laccase, dissolved in water-immiscible organic solvents by entrapping them into the reversed micelles of surfactants solvated by water/organic cosolvent (glycerol or 1,4- or 2,3-butanediol or dimethyl sulfoxide) mixtures, are studied. As micelle-forming surfactants, sodium salt of bis(2-ethylhexyl)sulfosuccinate (Aerosol OT) in n-octane or cetyltrimethylammonium bromide in n-octane/chloroform (1 : 1 by volume) mixture are used. The dependences of the catalytic activity on the surfactant solvation degree are bell-shaped. Maxima of the catal
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Zhi-Jian, and Ronald D. Neuman. "Giant Rodlike Reversed Micelles." Journal of the American Chemical Society 116, no. 9 (1994): 4075–76. http://dx.doi.org/10.1021/ja00088a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MOZHAEV, VADIM V., NICOLE BEC, and CLAUDE BALNY. "Baroenzymology in Reversed Micelles." Annals of the New York Academy of Sciences 750, no. 1 Enzyme Engine (1995): 94–96. http://dx.doi.org/10.1111/j.1749-6632.1995.tb19933.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vos, K., C. Laane, and A. J. W. G. Visser. "SPECTROSCOPY OF REVERSED MICELLES." Photochemistry and Photobiology 45, s1 (1987): 863–78. http://dx.doi.org/10.1111/j.1751-1097.1987.tb07897.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Correa, N. Mariano, M. Alicia Biasutti, and Juana J. Silber. "Micropolarity of Reversed Micelles: Comparison between Anionic, Cationic, and Nonionic Reversed Micelles." Journal of Colloid and Interface Science 184, no. 2 (1996): 570–78. http://dx.doi.org/10.1006/jcis.1996.0653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Faisal, Khandokar Sadique, Andrew J. Clulow, Stephanie V. MacWilliams, et al. "Microstructure‒Thermal Property Relationships of Poly(Ethylene Glycol-b-Caprolactone) Copolymers and Their Micelles." Polymers 14, no. 20 (2022): 4365. http://dx.doi.org/10.3390/polym14204365.

Full text
Abstract:
The crystallinity of polymers strongly affects their properties. For block copolymers, whereby two crystallisable blocks are covalently tethered to one another, the molecular weight of the individual blocks and their relative weight fraction are important structural parameters that control their crystallisation. In the case of block copolymer micelles, these parameters can influence the crystallinity of the core, which has implications for drug encapsulation and release. Therefore, in this study, we aimed to determine how the microstructure of poly(ethylene glycol-b-caprolactone) (PEG-b-PCL) c
APA, Harvard, Vancouver, ISO, and other styles
11

Shapiro, Yurii E., Nikolai A. Budanov, Andrei V. Levashov, Nataliya L. Klyachko, Yurii L. Khmelnitsky та Karel Martinek. "13C NMR of study of entrapping proteins (α-chymotrypsin) into reversed micelles of surfactants (aerosol OT) in organic solvents (n-octane)". Collection of Czechoslovak Chemical Communications 54, № 4 (1989): 1126–34. http://dx.doi.org/10.1135/cccc19891126.

Full text
Abstract:
Hydrated reversed micelles of Aerosol OT (AOT) in octane have been studied by 13C NMR spectroscopy. The changes of spin-lattice relaxation times (T1) for individual segments of the AOT molecule, induced by entrapping a protein (α-chymotrypsin) into the micelle, have been determined by the inversion-recovery technique. The dramatic (three-fold) increase of T1 found for the α-CH2 groups in the AOT molecules indicates that (unlike in the unfilled micelle) in the protein-containing micelle the boundary of the water cavity is shifted outward (0.5-0.7 nm, under the given experimental conditions), th
APA, Harvard, Vancouver, ISO, and other styles
12

Nagy, Janos B., Youxin Yuan, Tze Chi Jao, and Janos Fendler. "Solubilizate reorganization in reversed micelles." Journal of Physical Chemistry 94, no. 2 (1990): 863–67. http://dx.doi.org/10.1021/j100365a065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, Zhen, and Donald A. Robb. "Tyrosinase activity in reversed micelles." Biocatalysis and Biotransformation 23, no. 6 (2005): 423–30. http://dx.doi.org/10.1080/10242420500387433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Reviejo, A. J., F. Liu, J. M. Pingarrón, and J. Wang. "Amperometric biosensors in reversed micelles." Journal of Electroanalytical Chemistry 374, no. 1-2 (1994): 133–39. http://dx.doi.org/10.1016/0022-0728(94)03355-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hilhorst, R., P. Fijneman, D. Heering, et al. "Protein extraction using reversed micelles." Pure and Applied Chemistry 64, no. 11 (1992): 1765–70. http://dx.doi.org/10.1351/pac199264111765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bulavchenko, A. I., E. K. Batishcheva, and V. G. Torgov. "Metal Concentration by Reversed Micelles." Separation Science and Technology 30, no. 2 (1995): 239–46. http://dx.doi.org/10.1080/01496399508015836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Dekker, Matthijs, Riet Hilhorst, and Colja Laane. "Isolating enzymes by reversed micelles." Analytical Biochemistry 178, no. 2 (1989): 217–26. http://dx.doi.org/10.1016/0003-2697(89)90628-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Castro, M. J. M., and J. M. S. Cabral. "Reversed micelles in biotechnological processes." Biotechnology Advances 6, no. 2 (1988): 151–67. http://dx.doi.org/10.1016/0734-9750(88)90002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hagen, Anna J., T. Alan Hatton, and Daniel I. C. Wang. "Protein refolding in reversed micelles." Biotechnology and Bioengineering 35, no. 10 (1990): 955–65. http://dx.doi.org/10.1002/bit.260351002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hagen, Anna J., T. Alan Hatton, and Daniel I. C. Wang. "Protein refolding in reversed micelles." Biotechnology and Bioengineering 95, no. 2 (2006): 285–94. http://dx.doi.org/10.1002/bit.21159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fileti, Ana Maria Frattini, Gilvan Anderson Fischer, and Elias Basile Tambourgi. "Neural modeling of bromelain extraction by reversed micelles." Brazilian Archives of Biology and Technology 53, no. 2 (2010): 455–63. http://dx.doi.org/10.1590/s1516-89132010000200026.

Full text
Abstract:
A pulsed-cap microcolumn was used for bromelain extraction from pineapple juice by reversed micelles. The cationic micellar solution used BDBAC as the surfactant, isooctane as the solvent and hexanol as the co-solvent. In order to capture the dynamic behavior and the nonlinearities of the column, the operating conditions were modified in accordance with the central composite design for the experiment, using the ratio between the light phase flow rate and the total flow rate, and the time interval between pulses. The effects on the purification factor and on total protein yield were modeled via
APA, Harvard, Vancouver, ISO, and other styles
22

Ichikawa, Sosaku. "Extraction of Protein Using Reversed Micelles." membrane 22, no. 6 (1997): 331–36. http://dx.doi.org/10.5360/membrane.22.331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Goto, Masahiro, Tsutomu Ono, Akihiko Horiuchi, and Shintaro Furusaki. "Extraction of DNA by Reversed Micelles." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 32, no. 1 (1999): 123–25. http://dx.doi.org/10.1252/jcej.32.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ramos, G. Ramis, M. C. Garcia Alvarez-Coque, Alain Berthod, and J. D. Winefordner. "Fluorescence in microemulsions and reversed micelles." Analytica Chimica Acta 208 (1988): 1–19. http://dx.doi.org/10.1016/s0003-2670(00)80731-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ono, Tsutomu, and Masahiro Goto. "Application of reversed micelles in bioengineering." Current Opinion in Colloid & Interface Science 2, no. 4 (1997): 397–401. http://dx.doi.org/10.1016/s1359-0294(97)80083-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nametkin, Sergey N., Michael I. Kolosov, Sergey Yu Ovodov, et al. "Cell-free translation in reversed micelles." FEBS Letters 309, no. 3 (1992): 330–32. http://dx.doi.org/10.1016/0014-5793(92)80800-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nguyen, Huyen, A. Madhusudhan Rao, J. B. Phillips, Vijay T. John, and Wayne F. Reed. "Gas Hydrate Formation in Reversed Micelles." Applied Biochemistry and Biotechnology 28-29, no. 1 (1991): 843–53. http://dx.doi.org/10.1007/bf02922654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hilhorst, Riet, Raymond M. D. Verhaert, and Antonie J. W. G. Visser. "Characterization of protein-containing reversed micelles." Biochemical Society Transactions 19, no. 3 (1991): 666–70. http://dx.doi.org/10.1042/bst0190666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hasmann, Francislene Andrea, Adalberto Pessoa, Jr. та Ines Conceicao Roberto. "β-Xylosidase Recovery by Reversed Micelles". Applied Biochemistry and Biotechnology 84-86, № 1-9 (2000): 1101–12. http://dx.doi.org/10.1385/abab:84-86:1-9:1101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jolivalt, C., N. Minier, and N. Renon. "Extraction of proteins using reversed micelles." Fluid Phase Equilibria 53 (December 1989): 483–89. http://dx.doi.org/10.1016/0378-3812(89)80114-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Goto, Masahiro, Tsutomu Ono, Fumiyuki Nakashio, and T. Alan Hatton. "Reversed micelles recognize an active protein." Biotechnology Techniques 10, no. 3 (1996): 141–44. http://dx.doi.org/10.1007/bf00158935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Srivastava, R. C., D. B. Madamwar, and V. V. Vyas. "Activation of enzymes by reversed micelles." Biotechnology and Bioengineering 29, no. 7 (1987): 901–2. http://dx.doi.org/10.1002/bit.260290713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Takagi, Shinsuke, Kyosuke Arakawa, Tetsuya Shimada, and Haruo Inoue. "Reversed Micelles Formed by Polyfluorinated Surfactant II; the Properties of Core Water Phase in Reversed Micelle." Bulletin of the Chemical Society of Japan 92, no. 7 (2019): 1200–1204. http://dx.doi.org/10.1246/bcsj.20190086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Martinek, Karel, Iliya V. Berezin, Yurii L. Khmelnitski, Natalya L. Klyachko, and Andrei V. Levashov. "Micellar enzymology: Potentialities in applied areas (biotechnology)." Collection of Czechoslovak Chemical Communications 52, no. 10 (1987): 2589–602. http://dx.doi.org/10.1135/cccc19872589.

Full text
Abstract:
Micellar enzymology, a new trend in molecular biology, studies the catalysis by enzymes entrapped into hydrated reversed micelles of surfactants (detergents, phospholipids) in organic solvents. The effect of solubilization on enzymatic properties is briefly considered. Applications of such biocatalytic systems in fine organic syntheses, in clinical and chemical analyses, and in medicine, as well as probable future trends in biotechnology are discussed.
APA, Harvard, Vancouver, ISO, and other styles
35

Burgess, John, and Marttand S. Patel. "Pentacyanoferrates(II): solvatochromism and reactivity in micelles and in reversed micelles." Journal of the Chemical Society, Faraday Transactions 89, no. 5 (1993): 783. http://dx.doi.org/10.1039/ft9938900783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hagen, Anna J., T. Alan Hatton, and Daniel I. C. Wang. "Protein refolding in reversed micelles: Interactions of the protein with micelle components." Biotechnology and Bioengineering 35, no. 10 (1990): 966–75. http://dx.doi.org/10.1002/bit.260351003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fileti, Ana Maria Frattini, Gilvan Anderson Fischer, José Carlos Curvelo Santana, and Elias Basile Tambourgi. "Batch and continuous extraction of bromelain enzyme by reversed micelles." Brazilian Archives of Biology and Technology 52, no. 5 (2009): 1225–34. http://dx.doi.org/10.1590/s1516-89132009000500021.

Full text
Abstract:
The main aim of this study was to optimize the conditions for bromelain extraction by reversed micelles from pineapple juice (Ananas comosus). The purification was carried out in batch extraction and a micro-column with pulsed caps for continuous extraction. The cationic micellar solution was made of BDBAC as a surfactant, isooctane as a solvent and hexanol as a co-solvent. For the batch process, a purification factor of 3 times at the best values of surfactant agent, co-solvent and salt concentrations, pH of the back and forward extractions were, 100 mM, 10% v/v, 1 M, 3.5 and 8, respectively.
APA, Harvard, Vancouver, ISO, and other styles
38

Hou, Yufang, Yubao Hou, Liu Yanyan, Guang Qin, and Jichang Li. "Extraction and Purification of a Lectin from Red Kidney Bean and Preliminary Immune Function Studies of the Lectin and Four Chinese Herbal Polysaccharides." Journal of Biomedicine and Biotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/217342.

Full text
Abstract:
Reversed micelles were used to extract lectin from red kidney beans and factors affecting reverse micellar systems (pH value, ionic strength and extraction time) were studied. The optimal conditions were extraction at pH 4–6, back extraction at pH 9–11, ion strength at 0.15 M NaCl, extraction for 4–6 minutes and back extraction for 8 minutes. The reverse micellar system was compared with traditional extraction methods and demonstrated to be a time-saving method for the extraction of red kidney bean lectin. Mitogenic activity of the lectin was reasonably good compared with commercial phytohemag
APA, Harvard, Vancouver, ISO, and other styles
39

Hirakawa, Hidehiko, Noriho Kamiya, Yutaka Kawarabayasi, and Teruyuki Nagamune. "Artificial Self-Sufficient P450 in Reversed Micelles." Molecules 15, no. 5 (2010): 2935–48. http://dx.doi.org/10.3390/molecules15052935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

KAWAI, Takeshi. "Preparation of Fine Particles in Reversed Micelles." Journal of the Japan Society of Colour Material 71, no. 7 (1998): 449–57. http://dx.doi.org/10.4011/shikizai1937.71.449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Goto, Masahiro. "Novel Biological Application of Nanostructured Reversed Micelles." membrane 26, no. 4 (2001): 179–84. http://dx.doi.org/10.5360/membrane.26.179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chun, Park Lian, Masahiro Goto, and Shintaro Furusaki. "Mutation Detection of DNA by Reversed Micelles." membrane 27, no. 2 (2002): 89–93. http://dx.doi.org/10.5360/membrane.27.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

ISHIKAWA, HARUO, KAZUYA NODA, and TAKASHI OKA. "Kinetic Properties of Enzymes in Reversed Micelles." Annals of the New York Academy of Sciences 613, no. 1 Enzyme Engine (1990): 529–33. http://dx.doi.org/10.1111/j.1749-6632.1990.tb18214.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Derouiche, Abdelouahed, and Christian Tondre. "Aerosol OT reversed micelles as carrier agents." Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85, no. 10 (1989): 3301. http://dx.doi.org/10.1039/f19898503301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Furusaki, Shintaro, and Kazuyuki Kishi. "Extraction of Amino Acids by Reversed Micelles." Journal of Chemical Engineering of Japan 23, no. 1 (1990): 91–93. http://dx.doi.org/10.1252/jcej.23.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sun, Y., L. Gu, X. D. Tong, S. Bai, S. Ichikawa, and S. Furusaki. "Protein Separation Using Affinity-Based Reversed Micelles." Biotechnology Progress 15, no. 3 (1999): 506–12. http://dx.doi.org/10.1021/bp990052w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pessoa, Adalberto, and Michele Vitolo. "Recovery of inulinase using BDBAC reversed micelles." Process Biochemistry 33, no. 3 (1998): 291–97. http://dx.doi.org/10.1016/s0032-9592(97)00072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sakono, Masafumi, Masahiro Goto, and Shintaro Furusaki. "Refolding of cytochrome c using reversed micelles." Journal of Bioscience and Bioengineering 89, no. 5 (2000): 458–62. http://dx.doi.org/10.1016/s1389-1723(00)89096-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sakono, Masafumi, Masahiro Goto, and Shintaro Furusaki. "Refolding of cytochrome c using reversed micelles." Journal of Bioscience and Bioengineering 89, no. 6 (2000): 626. http://dx.doi.org/10.1016/s1389-1723(00)90053-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jolivalt, C., M. Minier та H. Renon. "Extraction of α-chymotrypsin using reversed micelles". Journal of Colloid and Interface Science 135, № 1 (1990): 85–96. http://dx.doi.org/10.1016/0021-9797(90)90290-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!