Journal articles on the topic 'Reversible CO2 capture'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Reversible CO2 capture.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, Hongwei, Abdullah M. Khan, Youzhu Yuan, and Shik Chi Tsang. "Mesoporous Silicon Nitride for Reversible CO2 Capture." Chemistry - An Asian Journal 7, no. 3 (January 13, 2012): 498–502. http://dx.doi.org/10.1002/asia.201100615.
Full textGupta, Kapil, Shubra Singh, and M. S. Ramachandra Rao. "Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5." Nano Energy 11 (January 2015): 146–53. http://dx.doi.org/10.1016/j.nanoen.2014.10.016.
Full textMa, Rui, Pan Hu, Li Xu, Jinxu Fan, Yutang Wang, Muqian Niu, and Shenming Tao. "Nanostructured polyethylenimine decorated palygorskite for reversible CO2 capture." Materials Express 7, no. 4 (August 1, 2017): 253–60. http://dx.doi.org/10.1166/mex.2017.1374.
Full textLin, Yu-Jeng, and Gary T. Rochelle. "Approaching a reversible stripping process for CO2 capture." Chemical Engineering Journal 283 (January 2016): 1033–43. http://dx.doi.org/10.1016/j.cej.2015.08.086.
Full textHanusch, Jan M., Isabel P. Kerschgens, Florian Huber, Markus Neuburger, and Karl Gademann. "Pyrrolizidines for direct air capture and CO2 conversion." Chemical Communications 55, no. 7 (2019): 949–52. http://dx.doi.org/10.1039/c8cc08574a.
Full textPollet, Pamela, and Charles Liotta. "Sustainable Chemistry: Reversible reaction of CO2 with amines." French-Ukrainian Journal of Chemistry 4, no. 1 (2016): 14–22. http://dx.doi.org/10.17721/fujcv4i1p14-22.
Full textMishra, Ashish Kumar, and Sundara Ramaprabhu. "Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture." Journal of Materials Chemistry 22, no. 9 (2012): 3708. http://dx.doi.org/10.1039/c2jm15385h.
Full textBarzagli, Francesco, Sarah Lai, and Fabrizio Mani. "Novel non-aqueous amine solvents for reversible CO2 capture." Energy Procedia 63 (2014): 1795–804. http://dx.doi.org/10.1016/j.egypro.2014.11.186.
Full textWielend, Dominik, Dogukan Hazar Apaydin, and Niyazi Serdar Sariciftci. "Anthraquinone thin-film electrodes for reversible CO2 capture and release." Journal of Materials Chemistry A 6, no. 31 (2018): 15095–101. http://dx.doi.org/10.1039/c8ta04817g.
Full textNousir, Saadia, Vasilica-Alisa Arus, Tze Chieh Shiao, Nabil Bouazizi, René Roy, and Abdelkrim Azzouz. "Organically modified activated bentonites for the reversible capture of CO2." Microporous and Mesoporous Materials 290 (December 2019): 109652. http://dx.doi.org/10.1016/j.micromeso.2019.109652.
Full textKhan, M. Abdullah, Ahad Hussain Javed, Memoona Qammar, Muhammad Hafeez, Muhammad Arshad, Mazhar Iqbal Zafar, Afrah M. Aldawsari, Afzal Shah, Zia ur Rehman, and Naseem Iqbal. "Nitrogen-rich mesoporous carbon for high temperature reversible CO2 capture." Journal of CO2 Utilization 43 (January 2021): 101375. http://dx.doi.org/10.1016/j.jcou.2020.101375.
Full textMöller, F., K. Merz, C. Herrmann, and U. P. Apfel. "Bimetallic nickel complexes for selective CO2 carbon capture and sequestration." Dalton Transactions 45, no. 3 (2016): 904–7. http://dx.doi.org/10.1039/c5dt04267d.
Full textKumar Mishra, Ashish, and Sundara Ramaprabhu. "Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate." RSC Advances 2, no. 5 (2012): 1746. http://dx.doi.org/10.1039/c1ra00958c.
Full textGonzález-Martínez, Gerardo A., Tamara Jurado-Vázquez, Diego Solís-Ibarra, Brenda Vargas, Elí Sánchez-González, Ana Martínez, Rubicelia Vargas, Eduardo González-Zamora, and Ilich A. Ibarra. "Confinement of H2O and EtOH to enhance CO2 capture in MIL-53(Al)-TDC." Dalton Transactions 47, no. 28 (2018): 9459–65. http://dx.doi.org/10.1039/c8dt01369a.
Full textSwitzer, Jackson R., Amy L. Ethier, Kyle M. Flack, Elizabeth J. Biddinger, Leslie Gelbaum, Pamela Pollet, Charles A. Eckert, and Charles L. Liotta. "Reversible Ionic Liquid Stabilized Carbamic Acids: A Pathway Toward Enhanced CO2 Capture." Industrial & Engineering Chemistry Research 52, no. 36 (August 27, 2013): 13159–63. http://dx.doi.org/10.1021/ie4018836.
Full textCarrera, Gonçalo V. S. M., Noémi Jordão, Luís C. Branco, and Manuel Nunes da Ponte. "CO2 capture and reversible release using mono-saccharides and an organic superbase." Journal of Supercritical Fluids 105 (October 2015): 151–57. http://dx.doi.org/10.1016/j.supflu.2015.02.015.
Full textZhang, Na, Zhaohe Huang, Haiming Zhang, Jingwen Ma, Bin Jiang, and Luhong Zhang. "Highly Efficient and Reversible CO2 Capture by Task-Specific Deep Eutectic Solvents." Industrial & Engineering Chemistry Research 58, no. 29 (July 2019): 13321–29. http://dx.doi.org/10.1021/acs.iecr.9b02041.
Full textHuang, Chuanliang, Changjun Liu, Kejing Wu, Hairong Yue, Siyang Tang, Houfang Lu, and Bin Liang. "CO2 Capture from Flue Gas Using an Electrochemically Reversible Hydroquinone/Quinone Solution." Energy & Fuels 33, no. 4 (March 6, 2019): 3380–89. http://dx.doi.org/10.1021/acs.energyfuels.8b04419.
Full textGalven, Cyrille, Jean-Louis Fourquet, Emmanuelle Suard, Marie-Pierre Crosnier-Lopez, and Françoise Le Berre. "Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7." Dalton Transactions 39, no. 17 (2010): 4191. http://dx.doi.org/10.1039/c002223n.
Full textLei, Xingxing, Yingjie Xu, Lili Zhu, and Xuhong Wang. "Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid." RSC Advances 4, no. 14 (2014): 7052. http://dx.doi.org/10.1039/c3ra47524g.
Full textKumar, Surjith, Xia Tong, Yves L. Dory, Martin Lepage, and Yue Zhao. "A CO2-switchable polymer brush for reversible capture and release of proteins." Chem. Commun. 49, no. 1 (2013): 90–92. http://dx.doi.org/10.1039/c2cc36284h.
Full textJung, Youngkyun, Young Gun Ko, In Wook Nah, and Ung Su Choi. "Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop." Chemical Engineering Journal 427 (January 2022): 131781. http://dx.doi.org/10.1016/j.cej.2021.131781.
Full textTam, Si Man, Malcolm E. Tessensohn, Jae Yu Tan, Arnold Subrata, and Richard D. Webster. "Competition between Reversible Capture of CO2 and Release of CO2•– Using Electrochemically Reduced Quinones in Acetonitrile Solutions." Journal of Physical Chemistry C 125, no. 22 (June 1, 2021): 11916–27. http://dx.doi.org/10.1021/acs.jpcc.1c00997.
Full textGu, Yanxue, Yucui Hou, Shuhang Ren, Ying Sun, and Weize Wu. "Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2." ACS Omega 5, no. 12 (March 17, 2020): 6809–16. http://dx.doi.org/10.1021/acsomega.0c00150.
Full textHe, Hongkun, Wenwen Li, Melissa Lamson, Mingjiang Zhong, Dominik Konkolewicz, Chin Ming Hui, Karin Yaccato, et al. "Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture." Polymer 55, no. 1 (January 2014): 385–94. http://dx.doi.org/10.1016/j.polymer.2013.08.002.
Full textGonzalez-Miquel, Maria, Manish Talreja, Amy L. Ethier, Kyle Flack, Jackson R. Switzer, Elizabeth J. Biddinger, Pamela Pollet, et al. "COSMO-RS Studies: Structure–Property Relationships for CO2 Capture by Reversible Ionic Liquids." Industrial & Engineering Chemistry Research 51, no. 49 (November 30, 2012): 16066–73. http://dx.doi.org/10.1021/ie302449c.
Full textQin, Gangqiang, Qianyi Cui, Weihua Wang, Ping Li, Aijun Du, and Qiao Sun. "First-Principles Study of Electrocatalytically Reversible CO2 Capture on Graphene-like C3 N." ChemPhysChem 19, no. 20 (August 14, 2018): 2788–95. http://dx.doi.org/10.1002/cphc.201800385.
Full textHe, Xi, Ke Mei, Rina Dao, Jingsong Cai, Wenjun Lin, Xueqian Kong, and Congmin Wang. "Highly efficient and reversible CO2 capture by tunable anion-functionalized macro-porous resins." AIChE Journal 63, no. 7 (January 27, 2017): 3008–15. http://dx.doi.org/10.1002/aic.15647.
Full textWang, Congmin, Shannon M. Mahurin, Huimin Luo, Gary A. Baker, Haoran Li, and Sheng Dai. "Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures." Green Chemistry 12, no. 5 (2010): 870. http://dx.doi.org/10.1039/b927514b.
Full textYanase, Ikuo, Satoshi Konno, and Hidehiko Kobayashi. "Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles." Advanced Powder Technology 29, no. 5 (May 2018): 1239–45. http://dx.doi.org/10.1016/j.apt.2018.02.016.
Full textAzzouz, Abdelkrim, Saadia Nousir, Nicoleta Platon, Kamel Ghomari, Tze Chieh Shiao, Grégory Hersant, Jean-Yves Bergeron, and René Roy. "Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols." International Journal of Greenhouse Gas Control 17 (September 2013): 140–47. http://dx.doi.org/10.1016/j.ijggc.2013.04.013.
Full textJiang, Bin, Zhaohe Huang, Luhong Zhang, Yongli Sun, Huawei Yang, and Hanrong Bi. "Highly efficient and reversible CO2 capture by imidazolate-based ether-functionalized ionic liquids with a capture transforming process." Journal of the Taiwan Institute of Chemical Engineers 69 (December 2016): 85–92. http://dx.doi.org/10.1016/j.jtice.2016.10.009.
Full textKhokarale, Santosh Govind, and Jyri-Pekka Mikkola. "Efficient and catalyst free synthesis of acrylic plastic precursors: methyl propionate and methyl methacrylate synthesis through reversible CO2 capture." Green Chemistry 21, no. 8 (2019): 2138–47. http://dx.doi.org/10.1039/c9gc00413k.
Full textMukesh, Chandrakant, Santosh Govind Khokarale, Pasi Virtanen, and Jyri-Pekka Mikkola. "Rapid desorption of CO2 from deep eutectic solvents based on polyamines at lower temperatures: an alternative technology with industrial potential." Sustainable Energy & Fuels 3, no. 8 (2019): 2125–34. http://dx.doi.org/10.1039/c9se00112c.
Full textGalven, Cyrille, Thierry Pagnier, Noël Rosman, Françoise Le Berre, and Marie-Pierre Crosnier-Lopez. "β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture." Inorganic Chemistry 57, no. 12 (June 5, 2018): 7334–45. http://dx.doi.org/10.1021/acs.inorgchem.8b00993.
Full textSong, Juzheng, Liangliang Zhu, Xiaoyang Shi, Yilun Liu, Hang Xiao, and Xi Chen. "Moisture Swing Ion-Exchange Resin-PO4 Sorbent for Reversible CO2 Capture from Ambient Air." Energy & Fuels 33, no. 7 (June 11, 2019): 6562–67. http://dx.doi.org/10.1021/acs.energyfuels.9b00863.
Full textHe, Hongkun, Mingjiang Zhong, Dominik Konkolewicz, Karin Yacatto, Timothy Rappold, Glenn Sugar, Nathaniel E. David, and Krzysztof Matyjaszewski. "Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture." Journal of Materials Chemistry A 1, no. 23 (2013): 6810. http://dx.doi.org/10.1039/c3ta10699c.
Full textHiremath, Vishwanath, Arvind H. Jadhav, Hanyeong Lee, Soonchul Kwon, and Jeong Gil Seo. "Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica." Chemical Engineering Journal 287 (March 2016): 602–17. http://dx.doi.org/10.1016/j.cej.2015.11.075.
Full textChen, Yingfan, Hanxue Sun, Ruixia Yang, Tingting Wang, Chunjuan Pei, Zhentao Xiang, Zhaoqi Zhu, Weidong Liang, An Li, and Weiqiao Deng. "Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake." Journal of Materials Chemistry A 3, no. 1 (2015): 87–91. http://dx.doi.org/10.1039/c4ta04235b.
Full textVogt, Christian, Gregory P. Knowles, and Alan L. Chaffee. "Multiple sorption cycles evaluation of cadmium oxide–alkali metal halide mixtures for pre-combustion CO2 capture." J. Mater. Chem. A 2, no. 12 (2014): 4299–308. http://dx.doi.org/10.1039/c3ta15131j.
Full textBuffo, Giulio, Domenico Ferrero, Massimo Santarelli, and Andrea Lanzini. "Reversible Solid Oxide Cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse." E3S Web of Conferences 113 (2019): 02009. http://dx.doi.org/10.1051/e3sconf/201911302009.
Full textGhasem, Nayef. "Modeling and Simulation of the Simultaneous Absorption/Stripping of CO2 with Potassium Glycinate Solution in Membrane Contactor." Membranes 10, no. 4 (April 16, 2020): 72. http://dx.doi.org/10.3390/membranes10040072.
Full textCamper, Dean, Jason E. Bara, Douglas L. Gin, and Richard D. Noble. "Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2." Industrial & Engineering Chemistry Research 47, no. 21 (November 5, 2008): 8496–98. http://dx.doi.org/10.1021/ie801002m.
Full textSehaqui, Houssine, María Elena Gálvez, Viola Becatinni, Yi cheng Ng, Aldo Steinfeld, Tanja Zimmermann, and Philippe Tingaut. "Fast and Reversible Direct CO2 Capture from Air onto All-Polymer Nanofibrillated Cellulose—Polyethylenimine Foams." Environmental Science & Technology 49, no. 5 (February 11, 2015): 3167–74. http://dx.doi.org/10.1021/es504396v.
Full textAzzouz, Abdelkrim, Vasilica-Alisa Aruş, Nicoleta Platon, Kamel Ghomari, Ieana-Denisa Nistor, Tze Chieh Shiao, and René Roy. "Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2." Adsorption 19, no. 5 (February 14, 2013): 909–18. http://dx.doi.org/10.1007/s10450-013-9498-3.
Full textNousir, Saadia, Gerlainde Yemelong, Sameh Bouguedoura, Yoann M. Chabre, Tze Chieh Shiao, René Roy, and Abdelkrim Azzouz. "Improved carbon dioxide storage over clay-supported perhydroxylated glucodendrimer." Canadian Journal of Chemistry 95, no. 9 (September 2017): 999–1007. http://dx.doi.org/10.1139/cjc-2017-0219.
Full textZhao, Tianxiang, Xiaomin Zhang, Zhuoheng Tu, Youting Wu, and Xingbang Hu. "Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture." Journal of Molecular Liquids 268 (October 2018): 617–24. http://dx.doi.org/10.1016/j.molliq.2018.07.096.
Full textVeselovskaya, Janna V., Vladimir S. Derevschikov, Anton S. Shalygin, and Dmitry A. Yatsenko. "K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air." Microporous and Mesoporous Materials 310 (January 2021): 110624. http://dx.doi.org/10.1016/j.micromeso.2020.110624.
Full textSignorile, Matteo, Jenny G. Vitillo, Maddalena D’Amore, Valentina Crocellà, Gabriele Ricchiardi, and Silvia Bordiga. "Characterization and Modeling of Reversible CO2 Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite." Journal of Physical Chemistry C 123, no. 28 (June 20, 2019): 17214–24. http://dx.doi.org/10.1021/acs.jpcc.9b01399.
Full textHuang, Yanjie, Guokai Cui, Yuling Zhao, Huiyong Wang, Zhiyong Li, Sheng Dai, and Jianji Wang. "Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids." Angewandte Chemie International Edition 56, no. 43 (September 19, 2017): 13293–97. http://dx.doi.org/10.1002/anie.201706280.
Full text