To see the other types of publications on this topic, follow the link: Reversible CO2 capture.

Journal articles on the topic 'Reversible CO2 capture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Reversible CO2 capture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yang, Hongwei, Abdullah M. Khan, Youzhu Yuan, and Shik Chi Tsang. "Mesoporous Silicon Nitride for Reversible CO2 Capture." Chemistry - An Asian Journal 7, no. 3 (January 13, 2012): 498–502. http://dx.doi.org/10.1002/asia.201100615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gupta, Kapil, Shubra Singh, and M. S. Ramachandra Rao. "Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5." Nano Energy 11 (January 2015): 146–53. http://dx.doi.org/10.1016/j.nanoen.2014.10.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Rui, Pan Hu, Li Xu, Jinxu Fan, Yutang Wang, Muqian Niu, and Shenming Tao. "Nanostructured polyethylenimine decorated palygorskite for reversible CO2 capture." Materials Express 7, no. 4 (August 1, 2017): 253–60. http://dx.doi.org/10.1166/mex.2017.1374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Yu-Jeng, and Gary T. Rochelle. "Approaching a reversible stripping process for CO2 capture." Chemical Engineering Journal 283 (January 2016): 1033–43. http://dx.doi.org/10.1016/j.cej.2015.08.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanusch, Jan M., Isabel P. Kerschgens, Florian Huber, Markus Neuburger, and Karl Gademann. "Pyrrolizidines for direct air capture and CO2 conversion." Chemical Communications 55, no. 7 (2019): 949–52. http://dx.doi.org/10.1039/c8cc08574a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pollet, Pamela, and Charles Liotta. "Sustainable Chemistry: Reversible reaction of CO2 with amines." French-Ukrainian Journal of Chemistry 4, no. 1 (2016): 14–22. http://dx.doi.org/10.17721/fujcv4i1p14-22.

Full text
Abstract:
The reaction of primary and secondary amines with CO2 has been successfully leveraged to develop sustainable processes. In this article, we review specific examples that use the reversible reaction of CO2 with amines to synergistically enhance reaction and recovery of the products. The three cases of interest highlighted herein are: (i) reversible protection of amines, (ii) reversible ionic liquids for CO2 capture and chemical transformations, and (iii) reversible gels of ethylene diamine. These examples demonstrate that the reversible reaction of amines with CO2 is one of the tools in the sustainable technology’s toolbox.
APA, Harvard, Vancouver, ISO, and other styles
7

Mishra, Ashish Kumar, and Sundara Ramaprabhu. "Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture." Journal of Materials Chemistry 22, no. 9 (2012): 3708. http://dx.doi.org/10.1039/c2jm15385h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barzagli, Francesco, Sarah Lai, and Fabrizio Mani. "Novel non-aqueous amine solvents for reversible CO2 capture." Energy Procedia 63 (2014): 1795–804. http://dx.doi.org/10.1016/j.egypro.2014.11.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wielend, Dominik, Dogukan Hazar Apaydin, and Niyazi Serdar Sariciftci. "Anthraquinone thin-film electrodes for reversible CO2 capture and release." Journal of Materials Chemistry A 6, no. 31 (2018): 15095–101. http://dx.doi.org/10.1039/c8ta04817g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nousir, Saadia, Vasilica-Alisa Arus, Tze Chieh Shiao, Nabil Bouazizi, René Roy, and Abdelkrim Azzouz. "Organically modified activated bentonites for the reversible capture of CO2." Microporous and Mesoporous Materials 290 (December 2019): 109652. http://dx.doi.org/10.1016/j.micromeso.2019.109652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Khan, M. Abdullah, Ahad Hussain Javed, Memoona Qammar, Muhammad Hafeez, Muhammad Arshad, Mazhar Iqbal Zafar, Afrah M. Aldawsari, Afzal Shah, Zia ur Rehman, and Naseem Iqbal. "Nitrogen-rich mesoporous carbon for high temperature reversible CO2 capture." Journal of CO2 Utilization 43 (January 2021): 101375. http://dx.doi.org/10.1016/j.jcou.2020.101375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Möller, F., K. Merz, C. Herrmann, and U. P. Apfel. "Bimetallic nickel complexes for selective CO2 carbon capture and sequestration." Dalton Transactions 45, no. 3 (2016): 904–7. http://dx.doi.org/10.1039/c5dt04267d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kumar Mishra, Ashish, and Sundara Ramaprabhu. "Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate." RSC Advances 2, no. 5 (2012): 1746. http://dx.doi.org/10.1039/c1ra00958c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

González-Martínez, Gerardo A., Tamara Jurado-Vázquez, Diego Solís-Ibarra, Brenda Vargas, Elí Sánchez-González, Ana Martínez, Rubicelia Vargas, Eduardo González-Zamora, and Ilich A. Ibarra. "Confinement of H2O and EtOH to enhance CO2 capture in MIL-53(Al)-TDC." Dalton Transactions 47, no. 28 (2018): 9459–65. http://dx.doi.org/10.1039/c8dt01369a.

Full text
Abstract:
EtOH adsorption–desorption properties of MIL-53(Al)-TDC along with the confinement of small amounts of water to enhance its CO2 capture, and the reversible capture of iodine are presented in this article.
APA, Harvard, Vancouver, ISO, and other styles
15

Switzer, Jackson R., Amy L. Ethier, Kyle M. Flack, Elizabeth J. Biddinger, Leslie Gelbaum, Pamela Pollet, Charles A. Eckert, and Charles L. Liotta. "Reversible Ionic Liquid Stabilized Carbamic Acids: A Pathway Toward Enhanced CO2 Capture." Industrial & Engineering Chemistry Research 52, no. 36 (August 27, 2013): 13159–63. http://dx.doi.org/10.1021/ie4018836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Carrera, Gonçalo V. S. M., Noémi Jordão, Luís C. Branco, and Manuel Nunes da Ponte. "CO2 capture and reversible release using mono-saccharides and an organic superbase." Journal of Supercritical Fluids 105 (October 2015): 151–57. http://dx.doi.org/10.1016/j.supflu.2015.02.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zhang, Na, Zhaohe Huang, Haiming Zhang, Jingwen Ma, Bin Jiang, and Luhong Zhang. "Highly Efficient and Reversible CO2 Capture by Task-Specific Deep Eutectic Solvents." Industrial & Engineering Chemistry Research 58, no. 29 (July 2019): 13321–29. http://dx.doi.org/10.1021/acs.iecr.9b02041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Huang, Chuanliang, Changjun Liu, Kejing Wu, Hairong Yue, Siyang Tang, Houfang Lu, and Bin Liang. "CO2 Capture from Flue Gas Using an Electrochemically Reversible Hydroquinone/Quinone Solution." Energy & Fuels 33, no. 4 (March 6, 2019): 3380–89. http://dx.doi.org/10.1021/acs.energyfuels.8b04419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Galven, Cyrille, Jean-Louis Fourquet, Emmanuelle Suard, Marie-Pierre Crosnier-Lopez, and Françoise Le Berre. "Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7." Dalton Transactions 39, no. 17 (2010): 4191. http://dx.doi.org/10.1039/c002223n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lei, Xingxing, Yingjie Xu, Lili Zhu, and Xuhong Wang. "Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid." RSC Advances 4, no. 14 (2014): 7052. http://dx.doi.org/10.1039/c3ra47524g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kumar, Surjith, Xia Tong, Yves L. Dory, Martin Lepage, and Yue Zhao. "A CO2-switchable polymer brush for reversible capture and release of proteins." Chem. Commun. 49, no. 1 (2013): 90–92. http://dx.doi.org/10.1039/c2cc36284h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Jung, Youngkyun, Young Gun Ko, In Wook Nah, and Ung Su Choi. "Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop." Chemical Engineering Journal 427 (January 2022): 131781. http://dx.doi.org/10.1016/j.cej.2021.131781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tam, Si Man, Malcolm E. Tessensohn, Jae Yu Tan, Arnold Subrata, and Richard D. Webster. "Competition between Reversible Capture of CO2 and Release of CO2•– Using Electrochemically Reduced Quinones in Acetonitrile Solutions." Journal of Physical Chemistry C 125, no. 22 (June 1, 2021): 11916–27. http://dx.doi.org/10.1021/acs.jpcc.1c00997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gu, Yanxue, Yucui Hou, Shuhang Ren, Ying Sun, and Weize Wu. "Hydrophobic Functional Deep Eutectic Solvents Used for Efficient and Reversible Capture of CO2." ACS Omega 5, no. 12 (March 17, 2020): 6809–16. http://dx.doi.org/10.1021/acsomega.0c00150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

He, Hongkun, Wenwen Li, Melissa Lamson, Mingjiang Zhong, Dominik Konkolewicz, Chin Ming Hui, Karin Yaccato, et al. "Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture." Polymer 55, no. 1 (January 2014): 385–94. http://dx.doi.org/10.1016/j.polymer.2013.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gonzalez-Miquel, Maria, Manish Talreja, Amy L. Ethier, Kyle Flack, Jackson R. Switzer, Elizabeth J. Biddinger, Pamela Pollet, et al. "COSMO-RS Studies: Structure–Property Relationships for CO2 Capture by Reversible Ionic Liquids." Industrial & Engineering Chemistry Research 51, no. 49 (November 30, 2012): 16066–73. http://dx.doi.org/10.1021/ie302449c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Qin, Gangqiang, Qianyi Cui, Weihua Wang, Ping Li, Aijun Du, and Qiao Sun. "First-Principles Study of Electrocatalytically Reversible CO2 Capture on Graphene-like C3 N." ChemPhysChem 19, no. 20 (August 14, 2018): 2788–95. http://dx.doi.org/10.1002/cphc.201800385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

He, Xi, Ke Mei, Rina Dao, Jingsong Cai, Wenjun Lin, Xueqian Kong, and Congmin Wang. "Highly efficient and reversible CO2 capture by tunable anion-functionalized macro-porous resins." AIChE Journal 63, no. 7 (January 27, 2017): 3008–15. http://dx.doi.org/10.1002/aic.15647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Congmin, Shannon M. Mahurin, Huimin Luo, Gary A. Baker, Haoran Li, and Sheng Dai. "Reversible and robust CO2 capture by equimolar task-specific ionic liquid–superbase mixtures." Green Chemistry 12, no. 5 (2010): 870. http://dx.doi.org/10.1039/b927514b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yanase, Ikuo, Satoshi Konno, and Hidehiko Kobayashi. "Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles." Advanced Powder Technology 29, no. 5 (May 2018): 1239–45. http://dx.doi.org/10.1016/j.apt.2018.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Azzouz, Abdelkrim, Saadia Nousir, Nicoleta Platon, Kamel Ghomari, Tze Chieh Shiao, Grégory Hersant, Jean-Yves Bergeron, and René Roy. "Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols." International Journal of Greenhouse Gas Control 17 (September 2013): 140–47. http://dx.doi.org/10.1016/j.ijggc.2013.04.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jiang, Bin, Zhaohe Huang, Luhong Zhang, Yongli Sun, Huawei Yang, and Hanrong Bi. "Highly efficient and reversible CO2 capture by imidazolate-based ether-functionalized ionic liquids with a capture transforming process." Journal of the Taiwan Institute of Chemical Engineers 69 (December 2016): 85–92. http://dx.doi.org/10.1016/j.jtice.2016.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Khokarale, Santosh Govind, and Jyri-Pekka Mikkola. "Efficient and catalyst free synthesis of acrylic plastic precursors: methyl propionate and methyl methacrylate synthesis through reversible CO2 capture." Green Chemistry 21, no. 8 (2019): 2138–47. http://dx.doi.org/10.1039/c9gc00413k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mukesh, Chandrakant, Santosh Govind Khokarale, Pasi Virtanen, and Jyri-Pekka Mikkola. "Rapid desorption of CO2 from deep eutectic solvents based on polyamines at lower temperatures: an alternative technology with industrial potential." Sustainable Energy & Fuels 3, no. 8 (2019): 2125–34. http://dx.doi.org/10.1039/c9se00112c.

Full text
Abstract:
Environment friendly and thermally stable deep eutectic solvents (DESs) based on polyamines with low price, low solvent loss and oxidatively non-degradable characteristic for reversible CO2 capture.
APA, Harvard, Vancouver, ISO, and other styles
35

Galven, Cyrille, Thierry Pagnier, Noël Rosman, Françoise Le Berre, and Marie-Pierre Crosnier-Lopez. "β-Na2TeO4: Phase Transition from an Orthorhombic to a Monoclinic Form. Reversible CO2 Capture." Inorganic Chemistry 57, no. 12 (June 5, 2018): 7334–45. http://dx.doi.org/10.1021/acs.inorgchem.8b00993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Song, Juzheng, Liangliang Zhu, Xiaoyang Shi, Yilun Liu, Hang Xiao, and Xi Chen. "Moisture Swing Ion-Exchange Resin-PO4 Sorbent for Reversible CO2 Capture from Ambient Air." Energy & Fuels 33, no. 7 (June 11, 2019): 6562–67. http://dx.doi.org/10.1021/acs.energyfuels.9b00863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

He, Hongkun, Mingjiang Zhong, Dominik Konkolewicz, Karin Yacatto, Timothy Rappold, Glenn Sugar, Nathaniel E. David, and Krzysztof Matyjaszewski. "Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture." Journal of Materials Chemistry A 1, no. 23 (2013): 6810. http://dx.doi.org/10.1039/c3ta10699c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hiremath, Vishwanath, Arvind H. Jadhav, Hanyeong Lee, Soonchul Kwon, and Jeong Gil Seo. "Highly reversible CO2 capture using amino acid functionalized ionic liquids immobilized on mesoporous silica." Chemical Engineering Journal 287 (March 2016): 602–17. http://dx.doi.org/10.1016/j.cej.2015.11.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Yingfan, Hanxue Sun, Ruixia Yang, Tingting Wang, Chunjuan Pei, Zhentao Xiang, Zhaoqi Zhu, Weidong Liang, An Li, and Weiqiao Deng. "Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake." Journal of Materials Chemistry A 3, no. 1 (2015): 87–91. http://dx.doi.org/10.1039/c4ta04235b.

Full text
Abstract:
Conjugated microporous polymer nanotubes (CMPNs) were synthesized and employed as a platform for investigation of CO2 and I2 adsorption. A high adsorption capacity of up to 208 wt% for reversible I2 capture was achieved.
APA, Harvard, Vancouver, ISO, and other styles
40

Vogt, Christian, Gregory P. Knowles, and Alan L. Chaffee. "Multiple sorption cycles evaluation of cadmium oxide–alkali metal halide mixtures for pre-combustion CO2 capture." J. Mater. Chem. A 2, no. 12 (2014): 4299–308. http://dx.doi.org/10.1039/c3ta15131j.

Full text
Abstract:
Both powdered and pelletised CdO–NaI composite CO2 sorbents were tested in reversible CO2 sorption experiments. Sorption capacity stability improved in moist environments and if pre-treated in inert gas.
APA, Harvard, Vancouver, ISO, and other styles
41

Buffo, Giulio, Domenico Ferrero, Massimo Santarelli, and Andrea Lanzini. "Reversible Solid Oxide Cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse." E3S Web of Conferences 113 (2019): 02009. http://dx.doi.org/10.1051/e3sconf/201911302009.

Full text
Abstract:
This work presents the concept of a Reversible Solid Oxide Cell (ReSOC) system localized in an urban residential district. The system is operated as a polygeneration plant that acts as interface between the electricity grid and the local micro-grid of the district. The ReSOC plant produces hydrogen via electrolysis during periods of low electricity demand (i.e., low-priced electricity). Hydrogen is used for multiple city needs: public mobility (H2 bus fleet), electricity production delivered to the micro-grid during peak-demand hours, and heat (accumulated in a storage) provided to the local district heating (DH) network. An additional option analyzed is the use of part of the H2 to produce DME using CO2 captured from biogas obtained from municipal solid wastes. The DME is used for fueling a fleet of trucks for the garbage collection in the residential district. A traditional CO2 removal process based on liquid MEA thermally integrated with the ReSOC system is studied. A time-resolved model interfaces the steady-state operating points with the thermal storage and the loads (electrical, H2 buses, DME trucks, heat), implementing constraints of thermal and H2 self-sufficiency on the system. Neglecting the DME option, the average daily roundtrip electric efficiency is about 38%, while the annual efficiency, which includes H2 mobility and thermal energy to DH, reaches 68%. When the DME option is considered, the thermal demand for CO2 removal and conversion process reduces the heat availability for DH, while the need for additional H2 for DME synthesis increases the electricity consumption for water electrolysis: both these phenomena imply a reduction of system efficiency (-9%) proportional to DME demand.
APA, Harvard, Vancouver, ISO, and other styles
42

Ghasem, Nayef. "Modeling and Simulation of the Simultaneous Absorption/Stripping of CO2 with Potassium Glycinate Solution in Membrane Contactor." Membranes 10, no. 4 (April 16, 2020): 72. http://dx.doi.org/10.3390/membranes10040072.

Full text
Abstract:
Global warming is an environmental problem caused mainly by one of the most serious greenhouse gas, CO2 emissions. Subsequently, the capture of CO2 from flue gas and natural gas is essential. Aqueous potassium glycinate (PG) is a promising novelty solvent used in the CO2 capture compared to traditional solvents; simultaneous solvent regeneration is associated with the absorption step. In present work, a 2D mathematical model where radial and axial diffusion are considered is developed for the simultaneous absorption/stripping process. The model describes the CO2/PG absorption/stripping process in a solvent–gas membrane absorption process. Regeneration data of rich potassium glycinate solvent using a varied range of acid gas loading (mol CO2 per mol PG) were used to predict the reversible reaction rate constant. A comparison of simulation results and experimental data validated the accuracy of the model predictions. The stripping reaction rate constant of rich potassium glycinate was determined experimentally and found to be a function of temperature and PG concentration. Model predictions were in good agreement with the experimental data. The results reveal that the percent removal of CO2 is directly proportional to CO2 loading and solvent stripping temperature.
APA, Harvard, Vancouver, ISO, and other styles
43

Camper, Dean, Jason E. Bara, Douglas L. Gin, and Richard D. Noble. "Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2." Industrial & Engineering Chemistry Research 47, no. 21 (November 5, 2008): 8496–98. http://dx.doi.org/10.1021/ie801002m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sehaqui, Houssine, María Elena Gálvez, Viola Becatinni, Yi cheng Ng, Aldo Steinfeld, Tanja Zimmermann, and Philippe Tingaut. "Fast and Reversible Direct CO2 Capture from Air onto All-Polymer Nanofibrillated Cellulose—Polyethylenimine Foams." Environmental Science & Technology 49, no. 5 (February 11, 2015): 3167–74. http://dx.doi.org/10.1021/es504396v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Azzouz, Abdelkrim, Vasilica-Alisa Aruş, Nicoleta Platon, Kamel Ghomari, Ieana-Denisa Nistor, Tze Chieh Shiao, and René Roy. "Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2." Adsorption 19, no. 5 (February 14, 2013): 909–18. http://dx.doi.org/10.1007/s10450-013-9498-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Nousir, Saadia, Gerlainde Yemelong, Sameh Bouguedoura, Yoann M. Chabre, Tze Chieh Shiao, René Roy, and Abdelkrim Azzouz. "Improved carbon dioxide storage over clay-supported perhydroxylated glucodendrimer." Canadian Journal of Chemistry 95, no. 9 (September 2017): 999–1007. http://dx.doi.org/10.1139/cjc-2017-0219.

Full text
Abstract:
Low-cost biosourced hybrid microporous adsorbents with improved affinity towards carbon dioxyde (CO2) were prepared through the incorporation of various amounts of glucosylated dendrimer into bentonite- and montmorillonite-rich composite materials. Characterization by nitrogen adsorption–desorption isotherms, surface specific and pore size analyses (BET and BJH), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed changes in the interlayer spacing and textural structure of the materials. Thermal programmed desorption measurements (TPD) showed significant improvements of the retention capacity of CO2 (CRC) and water (WRC). This was explained in terms of enhancement of both surface basicity and hydrophilic character due to the incorporation of terminal polyhydroxyl groups. The CRC was found to vary according to the previous saturation time with CO2 and the carrier gas throughput. CO2 was totally released upon temperature not exceeding 80 °C or even at room temperature upon strong carrier gas stream, thus providing evidence that CO2 capture involves almost exclusively physical interaction with the OH groups of the dendrimer. This result opens promising prospects for the reversible capture of carbon dioxide with easy release without thermal regeneration, more particularly when extending this concept to biosourced dendrimers.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, Tianxiang, Xiaomin Zhang, Zhuoheng Tu, Youting Wu, and Xingbang Hu. "Low-viscous diamino protic ionic liquids with fluorine-substituted phenolic anions for improving CO2 reversible capture." Journal of Molecular Liquids 268 (October 2018): 617–24. http://dx.doi.org/10.1016/j.molliq.2018.07.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Veselovskaya, Janna V., Vladimir S. Derevschikov, Anton S. Shalygin, and Dmitry A. Yatsenko. "K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air." Microporous and Mesoporous Materials 310 (January 2021): 110624. http://dx.doi.org/10.1016/j.micromeso.2020.110624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Signorile, Matteo, Jenny G. Vitillo, Maddalena D’Amore, Valentina Crocellà, Gabriele Ricchiardi, and Silvia Bordiga. "Characterization and Modeling of Reversible CO2 Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite." Journal of Physical Chemistry C 123, no. 28 (June 20, 2019): 17214–24. http://dx.doi.org/10.1021/acs.jpcc.9b01399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Huang, Yanjie, Guokai Cui, Yuling Zhao, Huiyong Wang, Zhiyong Li, Sheng Dai, and Jianji Wang. "Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2 by Ionic Liquids." Angewandte Chemie International Edition 56, no. 43 (September 19, 2017): 13293–97. http://dx.doi.org/10.1002/anie.201706280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography