Academic literature on the topic 'Reweighting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Reweighting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Reweighting"
Assländer, Lorenz, and Robert J. Peterka. "Sensory reweighting dynamics in human postural control." Journal of Neurophysiology 111, no. 9 (May 1, 2014): 1852–64. http://dx.doi.org/10.1152/jn.00669.2013.
Full textLinker, Stephanie M., R. Gregor Weiß, and Sereina Riniker. "Connecting dynamic reweighting Algorithms: Derivation of the dynamic reweighting family tree." Journal of Chemical Physics 153, no. 23 (December 21, 2020): 234106. http://dx.doi.org/10.1063/5.0019687.
Full textBoriçi, Artan. "Reweighting with Stochastic Determinants." Progress of Theoretical Physics Supplement 153 (2004): 335–39. http://dx.doi.org/10.1143/ptps.153.335.
Full textDickman, Ronald. "Reweighting in nonequilibrium simulations." Physical Review E 60, no. 3 (September 1, 1999): R2441—R2444. http://dx.doi.org/10.1103/physreve.60.r2441.
Full textKoop, G., and D. J. Poirier. "Incomplete models and reweighting." Econometric Reviews 18, no. 1 (January 1999): 97–104. http://dx.doi.org/10.1080/07474939908800431.
Full textRobinson, Norman F., Alan W. Gertler, and William R. Pierson. "MOBILE4.1/5 reweighting software." Environmental Software 10, no. 1 (January 1995): 11–22. http://dx.doi.org/10.1016/0266-9838(94)00018-3.
Full textLorenz, Douglas J., Steven Levy, and Somnath Datta. "Inferring marginal association with paired and unpaired clustered data." Statistical Methods in Medical Research 27, no. 6 (September 20, 2016): 1806–17. http://dx.doi.org/10.1177/0962280216669184.
Full textEnns, Deborah L., and Angelo N. Belcastro. "Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting." Canadian Journal of Physiology and Pharmacology 84, no. 6 (June 2006): 601–9. http://dx.doi.org/10.1139/y06-013.
Full textHenriksen, E. J., C. S. Stump, T. H. Trinh, and S. D. Beaty. "Role of glucose transport in glycogen supercompensation in reweighted rat skeletal muscle." Journal of Applied Physiology 80, no. 5 (May 1, 1996): 1540–46. http://dx.doi.org/10.1152/jappl.1996.80.5.1540.
Full textNguyen, Nancy Duong, and Li-Chun Zhang. "An Appraisal of Common Reweighting Methods for Nonresponse in Household Surveys Based on the Norwegian Labour Force Survey and the Statistics on Income and Living Conditions Survey." Journal of Official Statistics 36, no. 1 (March 1, 2020): 151–72. http://dx.doi.org/10.2478/jos-2020-0008.
Full textDissertations / Theses on the topic "Reweighting"
Fang, Zhou. "Reweighting methods in high dimensional regression." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:26f8541a-9e2d-466a-84aa-e6850c4baba9.
Full textDonati, Luca [Verfasser]. "Reweighting methods for molecular dynamics / Luca Donati." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1186062649/34.
Full textHarms, Torsten Nils Janssen. "Reweighting and calibration estimators for complex data structures /." Berlin : [s.n.], 2005. http://aleph.unisg.ch/hsgscan/hm00135323.pdf.
Full textFang, Tongtong. "Learning from noisy labelsby importance reweighting: : a deep learning approach." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264125.
Full textFelaktiga annoteringar kan sänka klassificeringsprestanda.Speciellt för djupa nätverk kan detta leda till dålig generalisering. Nyligen har brusrobust djup inlärning överträffat andra inlärningsmetoder när det gäller hantering av komplexa indata Befintligta resultat från djup inlärning kan dock inte tillhandahålla rimliga viktomfördelningskriterier. För att hantera detta kunskapsgap och inspirerat av domänanpassning föreslår vi en ny robust djup inlärningsmetod som använder omviktning. Omviktningen görs genom att minimera den maximala medelavvikelsen mellan förlustfördelningen av felmärkta och korrekt märkta data. I experiment slår den föreslagna metoden andra metoder. Resultaten visar en stor forskningspotential för att tillämpa domänanpassning. Dessutom motiverar den föreslagna metoden undersökningar av andra intressanta problem inom domänanpassning genom att möjliggöra smarta omviktningar.
Dunham, Samuel I. "Role of Alpha Oscillations in Reweighting Multiple Attributes During Choice." Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/cmc_theses/1104.
Full textLee, Hyunwook. "Effects of a 4-Week Dynamic Balance Training with Stroboscopic Glasses on Postural Control in Patients with Chronic Ankle Instability." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/9031.
Full textChen, Ziyue. "Generalizing Results from Randomized Trials to Target Population via Weighting Methods Using Propensity Score." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503007759352248.
Full textKhanafer, Sajida. "Sensory Integration During Goal Directed Reaches: The Effects of Manipulating Target Availability." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23422.
Full textZago, Paula Fávaro Polastri. "Processos adaptativos no sistema de controle postural de bebês, crianças e adultos / Paula Fávaro Polastri Zago. -." Rio Claro : [s.n.], 2007. http://hdl.handle.net/11449/100454.
Full textBanca: Sérgio Tosi Rodrigues
Banca: Ronald Dennis Paul Kenneth Clive Ranvaud
Banca: Renato de Moraes
Banca: Dora S. Fix Ventura
Resumo: Três experimentos foram propostos para investigar os ajustes dinâmicos nos pesos de múltiplas fontes de informação sensorial. O primeiro experimento investigou as respostas posturais de 18 bebês frente às mudanças abruptas na amplitude do estímulo visual. Eles permaneceram sentados dentro de uma sala móvel por 8 tentativas de 60 segundos cada. A sala ficou estacionária na primeira tentativa. Nas sete tentativas seguintes, a sala foi oscilada em 0,2 Hz com amplitude de 1,1 cm, com exceção da quinta tentativa, na qual a sala foi movimentada em amplitude mais alta (3,2 cm). Os resultados mostraram fraco acoplamento entre informação visual e oscilação corporal. Contudo, a variabilidade de oscilação foi maior em bebês experientes no sentar independente. Nós concluímos que bebês não foram capazes de se adaptar às pequenas alterações na amplitude do estímulo visual. O segundo experimento investigou como o controle postural de crianças se adapta às abruptas mudanças no ambiente visual. Trinta crianças de 4, 8 e 12 anos de idade e dez adultos, permaneceram em pé dentro de uma sala móvel. A situação experimental foi similar a do primeiro experimento exceto que a amplitude baixa da sala foi de 0,5 cm e a amplitude alta foi de 3,2 cm. As respostas posturais de crianças mais velhas e adultas diminuíram mais para o estímulo visual do que aquelas de crianças mais novas quando a amplitude da sala foi aumentada. A variabilidade de oscilação diminuiu com a idade e foi maior durante a tentativa de alta amplitude. Crianças tão novas quanto 4 anos de idade já têm desenvolvida a capacidade de rapidamente diminuir a influência do estimulo visual. Contudo, os mais altos valores de ganho e variabilidade residual para crianças de 4 e 8 anos de idade sugerem que elas não apresentam respostas totalmente calibradas ao nível adulto... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Three experiments were designed to investigate the dynamic adjustments in the weights of multiple sensory modalities. The first experiment investigated the postural responses of 18 infants to abrupt changes in the amplitude of visual stimulus. They seated inside of a moving room for eight trials of 60 sec apiece. The room was stationary in the first trial. In the following seven trials, the room oscillated at 0.2 Hz with amplitude of 1.1 cm, with the exception of the fifth trial, in which the room moved at higher amplitude (3.2 cm). The results showed weak coupling between visual stimulus and body sway. However, sway variability of experienced sitters was higher in the high-amplitude trial. We concluded that infants were not able to adapt to low range of visual stimulus amplitude. The second experiment investigated how childrens postural control adapt to abrupt changes in the surrounding visual environment. Thirty children from 4-, 8- and 12-year olds and ten adults stood upright inside of a moving room. The experimental set-up was similar to the first experiment except that low-amplitude was 0.5 cm and high-amplitude was 3.2 cm. Body sway responses of old children and adults downweight more to the visual stimulus than young children when the amplitude of the room increased. Sway variability decreased with age and was largest during the high-amplitude trial. Children as young as four years of age have already developed the adaptive capability to quickly downweight visual information. However, the higher gain values and residual variability observed for the 4 and 8 year-old children suggest that they have not fully calibrated their response to the adult level. The third experiment investigated the postural responses of two sensory modalities measured simultaneously... (Complete abstract click electronic access below)
Doutor
Zago, Paula Fávaro Polastri [UNESP]. "Processos adaptativos no sistema de controle postural de bebês, crianças e adultos: Paula Fávaro Polastri Zago. -." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/100454.
Full textTrês experimentos foram propostos para investigar os ajustes dinâmicos nos pesos de múltiplas fontes de informação sensorial. O primeiro experimento investigou as respostas posturais de 18 bebês frente às mudanças abruptas na amplitude do estímulo visual. Eles permaneceram sentados dentro de uma sala móvel por 8 tentativas de 60 segundos cada. A sala ficou estacionária na primeira tentativa. Nas sete tentativas seguintes, a sala foi oscilada em 0,2 Hz com amplitude de 1,1 cm, com exceção da quinta tentativa, na qual a sala foi movimentada em amplitude mais alta (3,2 cm). Os resultados mostraram fraco acoplamento entre informação visual e oscilação corporal. Contudo, a variabilidade de oscilação foi maior em bebês experientes no sentar independente. Nós concluímos que bebês não foram capazes de se adaptar às pequenas alterações na amplitude do estímulo visual. O segundo experimento investigou como o controle postural de crianças se adapta às abruptas mudanças no ambiente visual. Trinta crianças de 4, 8 e 12 anos de idade e dez adultos, permaneceram em pé dentro de uma sala móvel. A situação experimental foi similar a do primeiro experimento exceto que a amplitude baixa da sala foi de 0,5 cm e a amplitude alta foi de 3,2 cm. As respostas posturais de crianças mais velhas e adultas diminuíram mais para o estímulo visual do que aquelas de crianças mais novas quando a amplitude da sala foi aumentada. A variabilidade de oscilação diminuiu com a idade e foi maior durante a tentativa de alta amplitude. Crianças tão novas quanto 4 anos de idade já têm desenvolvida a capacidade de rapidamente diminuir a influência do estimulo visual. Contudo, os mais altos valores de ganho e variabilidade residual para crianças de 4 e 8 anos de idade sugerem que elas não apresentam respostas totalmente calibradas ao nível adulto...
Three experiments were designed to investigate the dynamic adjustments in the weights of multiple sensory modalities. The first experiment investigated the postural responses of 18 infants to abrupt changes in the amplitude of visual stimulus. They seated inside of a moving room for eight trials of 60 sec apiece. The room was stationary in the first trial. In the following seven trials, the room oscillated at 0.2 Hz with amplitude of 1.1 cm, with the exception of the fifth trial, in which the room moved at higher amplitude (3.2 cm). The results showed weak coupling between visual stimulus and body sway. However, sway variability of experienced sitters was higher in the high-amplitude trial. We concluded that infants were not able to adapt to low range of visual stimulus amplitude. The second experiment investigated how children s postural control adapt to abrupt changes in the surrounding visual environment. Thirty children from 4-, 8- and 12-year olds and ten adults stood upright inside of a moving room. The experimental set-up was similar to the first experiment except that low-amplitude was 0.5 cm and high-amplitude was 3.2 cm. Body sway responses of old children and adults downweight more to the visual stimulus than young children when the amplitude of the room increased. Sway variability decreased with age and was largest during the high-amplitude trial. Children as young as four years of age have already developed the adaptive capability to quickly downweight visual information. However, the higher gain values and residual variability observed for the 4 and 8 year-old children suggest that they have not fully calibrated their response to the adult level. The third experiment investigated the postural responses of two sensory modalities measured simultaneously... (Complete abstract click electronic access below)
Books on the topic "Reweighting"
John, Landt, ed. Reweighting a base population for a microsimulation model. Canberra: National Centre for Social and Economic Modelling, Faculty of Management, University of Canberra, 1995.
Find full textShrairman, Ruth. R2- Heaps With Suspended Relaxation For Manipulating Priority Queues And A New Algorithm For Reweighting Graphs. Dissertation.com, 2004.
Find full textBoudreau, Joseph F., and Eric S. Swanson. Classical spin systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0020.
Full textKravtsov, Vladimir. Heavy-tailed random matrices. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.13.
Full textBook chapters on the topic "Reweighting"
Har-Peled, Sariel. "Approximation via reweighting." In Mathematical Surveys and Monographs, 87–101. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/surv/173/06.
Full textWarmerdam, Vincent Damian, and Zoltán Szlávik. "Confusion Matrix Based Reweighting." In Contemporary Challenges and Solutions in Applied Artificial Intelligence, 143–48. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00651-2_19.
Full textAnson, Eric, and John Jeka. "Sensory Reweighting: A Rehabilitative Mechanism?" In Handbook of Medical Neuropsychology, 519–29. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1364-7_29.
Full textAnson, Eric, and John Jeka. "Sensory Reweighting: A Rehabilitative Mechanism?" In Handbook of Medical Neuropsychology, 789–800. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14895-9_35.
Full textBinder, Kurt, and Dieter W. Heermann. "Cluster Algorithms and Reweighting Methods." In Monte Carlo Simulation in Statistical Physics, 115–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10758-1_4.
Full textMarques, Reinaldo, and Geir Storvik. "Reweighting Schemes Based on Particle Methods." In The Contribution of Young Researchers to Bayesian Statistics, 73–76. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02084-6_14.
Full textCzischek, Stefanie. "Deep Neural Networks and Phase Reweighting." In Springer Theses, 151–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52715-0_6.
Full textLin, Zhun-Zheng, and Bi-Ru Dai. "Reweighting Forest for Extreme Multi-label Classification." In Big Data Analytics and Knowledge Discovery, 286–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64283-3_21.
Full textLai, Nan, Meina Kan, Shiguang Shan, and Xilin Chen. "Task-Adaptive Feature Reweighting for Few Shot Classification." In Computer Vision – ACCV 2018, 649–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20870-7_40.
Full textBotta, Marco. "Resampling vs Reweighting in Boosting a Relational Weak Learner." In AI*IA 2001: Advances in Artificial Intelligence, 70–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45411-x_9.
Full textConference papers on the topic "Reweighting"
Ziegler, Felix, Stefan Bluecher, Jan M. Pawlowski, Manuel Scherzer, Mike Schlosser, Ion-Olimpiu Stamatescu, and Sebastian Syrkowski. "Reweighting Lefschetz Thimbles." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0324.
Full textBussone, Andrea, Michele Della Morte, Martin Hansen, and Claudio Pica. "Reweighting twisted boundary conditions." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0021.
Full textFukaya, Hidenori, Sinya Aoki, Guido Cossu, Shoji Hashimoto, Takashi Kaneko, and Junichi Noaki. "Overlap/Domain-wall reweighting." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0127.
Full textXu Kejia, Tan Zhiying, and Chen Bin. "Reweighting recognition using kernel method." In 2011 3rd International Conference on Computer Research and Development (ICCRD). IEEE, 2011. http://dx.doi.org/10.1109/iccrd.2011.5764047.
Full textFinkenrath, Jacob, Francesco Knechtli, and Björn Leder. "Isospin Effects by Mass Reweighting." In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0297.
Full textLeder, Björn, Jacob Finkenrath, and Francesco Knechtli. "One flavor mass reweighting: foundations." In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0035.
Full textNodet, Pierre, Vincent Lemaire, Alexis Bondu, Antoine Cornuejols, and Adam Ouorou. "Importance Reweighting for Biquality Learning." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533349.
Full textXia, Hengren, Jeffrey D. MacQueen, and Jeremy J. Zimmerman. "Reweighting method for polynomial surface fitting." In SEG Technical Program Expanded Abstracts 1990. Society of Exploration Geophysicists, 1990. http://dx.doi.org/10.1190/1.1890294.
Full textCrimp, Reuben, and Andrew Trotman. "Automatic Term Reweighting for Query Expansion." In ADCS 2017: The 22nd Australasian Document Computing Symposium. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3166072.3166074.
Full textLiu, Shubao, Ke-Yue Zhang, Taiping Yao, Kekai Sheng, Shouhong Ding, Ying Tai, Jilin Li, Yuan Xie, and Lizhuang Ma. "Dual Reweighting Domain Generalization for Face Presentation Attack Detection." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/120.
Full textReports on the topic "Reweighting"
Anglade, Boaz, and Julia Escobar. Effect of Violence against Women on Victims and their Children: Evidence from Central America, the Dominican Republic, and Haiti. Inter-American Development Bank, March 2021. http://dx.doi.org/10.18235/0003157.
Full text