Academic literature on the topic 'RGB-D object segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RGB-D object segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "RGB-D object segmentation"
Shen, Xiaoke, and Ioannis Stamos. "3D Object Detection and Instance Segmentation from 3D Range and 2D Color Images." Sensors 21, no. 4 (February 9, 2021): 1213. http://dx.doi.org/10.3390/s21041213.
Full textYang, J., and Z. Kang. "INDOOR SEMANTIC SEGMENTATION FROM RGB-D IMAGES BY INTEGRATING FULLY CONVOLUTIONAL NETWORK WITH HIGHER-ORDER MARKOV RANDOM FIELD." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4 (September 19, 2018): 717–24. http://dx.doi.org/10.5194/isprs-archives-xlii-4-717-2018.
Full textRafique, Adnan Ahmed, Ahmad Jalal, and Kibum Kim. "Automated Sustainable Multi-Object Segmentation and Recognition via Modified Sampling Consensus and Kernel Sliding Perceptron." Symmetry 12, no. 11 (November 23, 2020): 1928. http://dx.doi.org/10.3390/sym12111928.
Full textNovkovic, Tonci, Fadri Furrer, Marko Panjek, Margarita Grinvald, Roland Siegwart, and Juan Nieto. "CLUBS: An RGB-D dataset with cluttered box scenes containing household objects." International Journal of Robotics Research 38, no. 14 (September 23, 2019): 1538–48. http://dx.doi.org/10.1177/0278364919875221.
Full textSchwarz, Max, Anton Milan, Arul Selvam Periyasamy, and Sven Behnke. "RGB-D object detection and semantic segmentation for autonomous manipulation in clutter." International Journal of Robotics Research 37, no. 4-5 (June 20, 2017): 437–51. http://dx.doi.org/10.1177/0278364917713117.
Full textThermos, Spyridon, Gerasimos Potamianos, and Petros Daras. "Joint Object Affordance Reasoning and Segmentation in RGB-D Videos." IEEE Access 9 (2021): 89699–713. http://dx.doi.org/10.1109/access.2021.3090471.
Full textKang, Xujie, Jing Li, Xiangtao Fan, Hongdeng Jian, and Chen Xu. "Object-Level Semantic Map Construction for Dynamic Scenes." Applied Sciences 11, no. 2 (January 11, 2021): 645. http://dx.doi.org/10.3390/app11020645.
Full textKang, Xujie, Jing Li, Xiangtao Fan, Hongdeng Jian, and Chen Xu. "Object-Level Semantic Map Construction for Dynamic Scenes." Applied Sciences 11, no. 2 (January 11, 2021): 645. http://dx.doi.org/10.3390/app11020645.
Full textXie, Qian, Oussama Remil, Yanwen Guo, Meng Wang, Mingqiang Wei, and Jun Wang. "Object Detection and Tracking Under Occlusion for Object-Level RGB-D Video Segmentation." IEEE Transactions on Multimedia 20, no. 3 (March 2018): 580–92. http://dx.doi.org/10.1109/tmm.2017.2751965.
Full textGe, Yanliang, Cong Zhang, Kang Wang, Ziqi Liu, and Hongbo Bi. "WGI-Net: A weighted group integration network for RGB-D salient object detection." Computational Visual Media 7, no. 1 (January 8, 2021): 115–25. http://dx.doi.org/10.1007/s41095-020-0200-x.
Full textDissertations / Theses on the topic "RGB-D object segmentation"
Lin, Xiao. "Semantic and generic object segmentation for scene analysis using RGB-D Data." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/620762.
Full textEn aquesta tesi, estudiem problemes de segmentació basats en RGB-D des de diferents perspectives pel que fa a les dades d'entrada. A part de la informació fotomètrica i geomètrica bàsica que conté les dades RGB-D, també es considera normalment informació semàntica i temporal en un sistema de segmentació basat en RGB-D. La primera part d'aquesta tesi se centra en un problema de segmentació semàntica basat en RGB-D, on hi ha disponibles les dades semàntiques predefinides i la informació d'entrenament anotada. En primer lloc, revisem com les dades RGB-D s'han explotat en l'estat de l'art per ajudar a entrenar classificadors en tasques de segmentació semàntica. Inspirats en aquests treballs, seguim un esquema d'aprenentatge multidisciplinar, on la segmentació semàntica i l'estimació de profunditat es tracten conjuntament en una Xarxa Neural Convolucional (CNN). Atès que la segmentació semàntica i l'estimació de profunditat són dues tasques altament correlacionades, l'aproximació a les mateixes pot ser mútuament beneficiosa. En aquest cas, la informació de profunditat juntament amb l'anotació de segmentació en les dades d'entrenament ajuda a definir millor l'objectiu del procés d'entrenament del classificador, en comptes d'alimentar el sistema cegament amb un canal d'entrada addicional. Dissenyem una nova arquitectura híbrida CNN investigant els atributs comuns, així com la distinció per a l'estimació de profunditat i la segmentació semàntica. L'arquitectura proposada es prova i es compara amb l'estat de l'art en diferents conjunts de dades. Encara que s'obtenen resultats excel·lents en la segmentació semàntica, les limitacions d'aquests enfocaments també són evidents. La segmentació semàntica es recolza fortament en la semàntica predefinida i una gran quantitat de dades anotades, que potser no estaran disponibles en aplicacions més generals. D'altra banda, la segmentació d'imatge clàssica aborda la tasca de segmentació d'una manera més general. Però els enfocaments clàssics gairebé no aconsegueixen la segmentació a nivell d'objectes a causa de la manca de coneixements de nivell superior. Així, en la segona part d'aquesta tesi, ens centrem en un problema de segmentació d'instàncies genèric basat en RGB-D, on la informació temporal està disponible a partir del vídeo RGB-D, mentre que no es proporciona informació semàntica. Presentem un nou enfocament genèric de segmentació per a vídeos de núvols de punts 3D explotant a fons la geometria explícita i les correspondències temporals en RGB-D. L'enfocament proposat es valida i es compara amb enfocaments de segmentació genèrica de l'estat de l'art en diferents conjunts de dades. Finalment, en la tercera part d'aquesta tesi, presentem un mètode que combina els avantatges tant en la segmentació semàntica com en la segmentació genèrica, on descobrim instàncies de l'objecte utilitzant l'enfocament genèric i les modelem mitjançant l'aprenentatge dels pocs exemples descoberts aplicant l'enfocament de segmentació semàntica. Per fer-ho, utilitzem la tècnica d'aprenentatge d'un tir, que realitza la transferència de coneixement d'un model entrenat de forma genèrica a un model d'instància específic. Els models apresos d'instància generen funcions robustes per distingir diferents instàncies, que alimenten la segmentació genèrica de segmentació per a la seva millora. L'enfocament es valida amb experiments realitzats en un conjunt de dades acuradament seleccionat.
Finman, Ross Edward. "Real-time large object category recognition using robust RGB-D segmentation features." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79218.
Full text"February 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 77-80).
This thesis looks at the problem of large object category recognition for use in robotic systems. While many algorithms exist for object recognition, category recognition remains a challenge within robotics, particularly with the robustness and real-time constraints within robotics. Our system addresses category recognition by treating it as a segmentation problem and using the resulting segments to learn and detect large objects based on their 3D characteristics. The first part of this thesis examines how to efficiently do unsupervised segmentation of an RGB-D image in a way that is consistent across wide viewpoint and scale variance, and creating features from the resulting segments. The second part of this thesis explores how to do robust data association to keep temporally consistent segments between frames. Our higher-level module filters and matches relevant segments to a learned database of categories and outputs a pixel-accurate, labeled object mask. Our system has a run time that is nearly linear with the number of RGB-D samples and we evaluate it in a real-time robotic application.
by Ross Edward Finman.
S.M.
Wagh, Ameya Yatindra. "A Deep 3D Object Pose Estimation Framework for Robots with RGB-D Sensors." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-theses/1287.
Full textAmbrus, Rares. "Unsupervised construction of 4D semantic maps in a long-term autonomy scenario." Doctoral thesis, KTH, Centrum för Autonoma System, CAS, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215323.
Full textQC 20171009
Silva, João Gonçalo Pires Ferreira da. "Object Segmentation and Classification from RGB-D Data." Master's thesis, 2017. http://hdl.handle.net/10316/83024.
Full textA classificação de objetos é um fator chave no desenvolvimento de robôs autónomos. A classificação de objetos pode ser grandemente melhorada com uma anterior segmentação e extração de características confiáveis. Com isso em mente, o principal objetivo desta dissertação é implementar um algoritmo de classificação de objetos, capaz de classificar objetos do conjunto de objetos e modelos de Yale-CMU-Berkeley (YCB), através do uso de um novo método de extração de características não supervisionado a partir de dados de vermelho, verde, azul e profundidade (RGB-D) e de redes neuronais artificiais do tipo feedforward (FFANNs). No método aqui apresentado, após a aquisição de dados a partir de uma câmara RGB-D, o ruído é removido e os objetos na cena são isolados. Para cada objeto isolado, agrupamento k-means é aplicado para extrair uma cor global e três cores principais. Três pontuações são calculadas com base no encaixe de formas primitivas (cilindro, esfera ou prisma retangular). As dimensões do objeto e volume são estimados calculando o volume da melhor forma primitiva ajustada anteriormente. De seguida, com essas características, FFANNs são treinadas e usadas para classificar esses objetos. Testes experimentais foram realizados em 20 objetos, do conjunto de objetos e modelos de YCB e os resultados indicam que este algoritmo tem uma precisão de reconhecimento de 96%, com cinco objetos no espaço de trabalho ao mesmo tempo e em poses aleatórias. Também é desenvolvido, um método de cálculo da localização de um objeto, com base na localização do centro geométrico, da melhor forma primitiva ajustada anteriormente.
Object classification is a key factor in the development of autonomous robots. Object classification can be greatly improved with previous reliable segmentation and feature extraction. With this in mind, the main objective of this dissertation is to implement an object classification algorithm, capable of classifying objects from the Yale-CMU-Berkeley (YCB) object and model set, through the use of a novel unsupervised feature extraction method from red, green, blue and depth (RGB-D) data and feedforward artificial neural networks (FFANNs). In the method presented here, after the acquisition of data from an RGB-D camera, noise is removed and the objects in the scene are isolated. For each isolated object, k-means clustering is applied to extract a global main colour and three main colours. Three scores are computed based on the fitting of primitive shapes (cylinder, sphere or rectangular prism). Object dimensions and volume are estimated by calculating the volume of the best primitive shape previously fitted. Then with these features, FFANNs are trained and used to classify these objects. Experimental tests were carried out in 20 objects, from the YCB object and model set and results indicate that this algorithm has a recognition accuracy of 96%, with five objects in the workspace at the same time and in random poses. Also, a method of calculating the location of an object, based on the location of the geometric centre, of the best primitive shape previously fitted is developed.
Bicho, Dylan Jordão. "Detecção e Seguimento de Objectos em Grelhas de Ocupação para Aplicações em Realidade Aumentada." Master's thesis, 2018. http://hdl.handle.net/10316/86377.
Full textAo longo dos últimos anos, os sistemas de Realidade Virtual e Realidade Aumentada têm vindo a ser desenvolvidos com o intuito de fornecer ao utilizador uma experiência totalmente imersiva através de uma estimulação sensorial artificial, trazendo inúmeros benefícios em várias áreas desde a saúde à educação. Contudo, estes sistemas encontram-se ainda limitados por diversos fatores: uma representação não realista da cena, falta de personalização e flexibilidade, viabilidade financeira, desconforto físico e psicológico dos utilizadores causando experiências nauseantes, entre outros. Estes também exigem que o utilizador se desloque num espaço vazio ou muito limitado pois não recriam o ambiente físico em que o utilizador se move num ambiente virtual com uma relação um-para-um (tanto nos movimentos efetuados como na interação com objetos presentes).No entanto, o desenvolvimento de tecnologias no domínio dos microprocessadores e do processamento gráfico, bem como o aparecimento de sensores de captura de informação tridimensional de baixo custo, mais eficientes para o mapeamento de cenários reais, tais como as Microsoft Kinect v2, têm vindo a tornar estes sistemas mais viáveis financeiramente. Nestes sistemas, uma boa representação tridimensional do ambiente é uma tarefa essencial, pois o seguimento de objetos e dos utilizadores é uma das componentes chave deste processo. Um pré-processamento da informação sensorial extraída dos sensores facilita este processo. Aplicando técnicas de seguimento a um objeto, é possível estimar a sua localização e a sua velocidade bem como prever futuros estados do mesmo.Nesta tese é proposto um sistema modular para a representação de um cenário tridimensional através de grelhas de ocupação recorrendo à informação sensorial de quatro Microsoft Kinects v2. Este processo pode ser dividido essencialmente em três módulos: primeiro, é feita a captura dos dados sensoriais das câmaras sendo posteriormente aplicadas técnicas para filtrar o ruído existente e para remover a informação relativa ao plano de fundo do cenário; depois, são aplicadas técnicas para a segmentação da nuvem de pontos construída; e finalmente, são aplicados filtros Bayesianos (tanto filtros de partículas, como filtros de Kalman) para o seguimento de todos os objetos e da cabeça de todos os utilizadores presentes no cenários. Deste modo, é obtida uma estimativa para a localização e para a velocidade instantânea dos objetos, bem como uma estimativa da sua próxima localização.O processo supramencionado foi sujeito a uma série de testes realizados em situações particularmente exigentes, sendo os resultados qualitativos obtidos apresentados neste documento. Os resultados demonstram que o sistema proposto é capaz de realizar o seguimento de qualquer objeto presente na cena, estando este limitado porém no caso de ocorrer uma interação com um objeto dinâmico. Relativamente ao módulo de seguimento de cabeça, este demonstrou ser robusto e aplicável em tempo real.
Over recent years, Virtual Reality and Augmented Reality systems have been developed with the mission of giving a user a completely immersive experience through artificial stimulation of the user’s senses, and have brought countless benefits in several areas such as health and education. However, these systems are still limited by different challenging factors: absence of a realistic representation of the real world, lack of customization and flexibility, financial viability, physical and psychological discomfort causing nauseating effects, among others. These systems also demand that the user moves in an empty or very limited space, given that they do not recreate the physical environment where the user is moving into the virtual representation in a one-to-one nature (both in user movements as well as objects that are present).In spite of these facts, the technological advances in the domains of microprocessors and graphical processing, as well as the upcoming low-cost and efficient 3D data capturing sensors such as the Microsoft Kinect v2 (useful for real scenario reconstructions), have made such systems more financially viable. In these systems, a good 3D representation of the environment is key to success, seeing that object and user tracking is one of the most important steps of this process. A pre-processing step of the extracted sensory data makes this process easier. Applying tracking techniques to the present objects, it is possible to know the location and velocity of any given object, as well as estimate its future states.In this thesis a modular system is presented for the accurate representation of a real-world scenario as 3D occupancy grids using sensory data from four Microsoft Kinect v2. This process can be divided into three essential modules: first, sensory data is captured from the cameras and image processing techniques are applied to filter out noise and information related to the background of the environment; next, 3D segmentation techniques are applied to the constructed point clouds; finally, Bayesian filters (both particle filters as well as Kalman filters) are applied to track all the objects in the scene, as well as the heads of all the users. In this way, an estimation of all relevant objects and users location and instantaneous velocity, as well as their next location, is obtained.The aforementioned process was subject to a series of particularly challenging tests, with results of these qualitative tests presented in this document. The results show that the proposed system is capable of correctly tracking any object present in the scene (being however limited by a possible interaction between dynamic objects). In addition, the user head tracking module showed to be robust and deployable in a real-time application.
Book chapters on the topic "RGB-D object segmentation"
Toscana, Giorgio, Stefano Rosa, and Basilio Bona. "Fast Graph-Based Object Segmentation for RGB-D Images." In Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016, 42–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56991-8_5.
Full textWang, Chao, Sheng Liu, Jianhua Zhang, Yuan Feng, and Shengyong Chen. "RGB-D Based Object Segmentation in Severe Color Degraded Environment." In Communications in Computer and Information Science, 465–76. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7305-2_40.
Full textJanus, Piotr, Tomasz Kryjak, and Marek Gorgon. "Foreground Object Segmentation in RGB–D Data Implemented on GPU." In Advances in Intelligent Systems and Computing, 809–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50936-1_68.
Full textSchneider, Lukas, Manuel Jasch, Björn Fröhlich, Thomas Weber, Uwe Franke, Marc Pollefeys, and Matthias Rätsch. "Multimodal Neural Networks: RGB-D for Semantic Segmentation and Object Detection." In Image Analysis, 98–109. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59126-1_9.
Full textGupta, Saurabh, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. "Learning Rich Features from RGB-D Images for Object Detection and Segmentation." In Computer Vision – ECCV 2014, 345–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10584-0_23.
Full textPhilipsen, Mark Philip, Anders Jørgensen, Sergio Escalera, and Thomas B. Moeslund. "RGB-D Segmentation of Poultry Entrails." In Articulated Motion and Deformable Objects, 168–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41778-3_17.
Full textOmbado Ouma, Yashon. "On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial Fuzzy c-Means Segmentation." In Geographic Information Systems in Geospatial Intelligence. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88877.
Full textConference papers on the topic "RGB-D object segmentation"
Wang, Fan, and Kris Hauser. "In-hand Object Scanning via RGB-D Video Segmentation." In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8794467.
Full textStuckler, Jorg, Nenad Biresev, and Sven Behnke. "Semantic mapping using object-class segmentation of RGB-D images." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6385983.
Full textPavel, Mircea Serban, Hannes Schulz, and Sven Behnke. "Recurrent convolutional neural networks for object-class segmentation of RGB-D video." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280820.
Full textFinman, Ross, Thomas Whelan, Michael Kaess, and John J. Leonard. "Toward lifelong object segmentation from change detection in dense RGB-D maps." In 2013 European Conference on Mobile Robots (ECMR). IEEE, 2013. http://dx.doi.org/10.1109/ecmr.2013.6698839.
Full textChen, I.-Kuei, Szu-Lu Hsu, Chung-Yu Chi, and Liang-Gee Chen. "Automatic video segmentation and object tracking with real-time RGB-D data." In 2014 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2014. http://dx.doi.org/10.1109/icce.2014.6776097.
Full textWang, Chaonan, Yanbing Xue, Hua Zhang, Guangping Xu, and Zan Gao. "Object segmentation of indoor scenes using perceptual organization on RGB-D images." In 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). IEEE, 2016. http://dx.doi.org/10.1109/wcsp.2016.7752578.
Full textZhang, Mingshao, Zhou Zhang, El-Sayed Aziz, Sven K. Esche, and Constantin Chassapis. "Kinect-Based Universal Range Sensor for Laboratory Experiments." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62979.
Full textWeber, Henrique, Claudio Rosito Jung, and Dan Gelb. "Hand and object segmentation from RGB-D images for interaction with planar surfaces." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351350.
Full textYalic, Hamdi Yalin, and Ahmet Burak Can. "Automatic Object Segmentation on RGB-D Data using Surface Normals and Region Similarity." In International Conference on Computer Vision Theory and Applications. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006617303790386.
Full textWang, Youbing, and Shoudong Huang. "Towards dense moving object segmentation based robust dense RGB-D SLAM in dynamic scenarios." In 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, 2014. http://dx.doi.org/10.1109/icarcv.2014.7064596.
Full text