Journal articles on the topic 'Rhamnolipds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rhamnolipds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Zhuangzhuang, Yumin Zhang, Junzhang Lin, Weidong Wang, and Shuang Li. "High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR." Molecules 24, no. 7 (2019): 1433. http://dx.doi.org/10.3390/molecules24071433.
Full textMendoza, Ayana Rose, Jenny Marie Patalinghug, Grace Canonigo, and Jonie Yee. "SCREENING OF RHAMNOLIPIDS FROM Pseudomonas spp. AND EVALUATION OF ITS ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL." Bacterial Empire 3, no. 3 (2020): 46–51. http://dx.doi.org/10.36547/be.2020.3.3.46-51.
Full textGunther, Nereus W., Alberto Nuñez, William Fett, and Daniel K. Y. Solaiman. "Production of Rhamnolipids by Pseudomonas chlororaphis, a Nonpathogenic Bacterium." Applied and Environmental Microbiology 71, no. 5 (2005): 2288–93. http://dx.doi.org/10.1128/aem.71.5.2288-2293.2005.
Full textSyldatk, C., S. Lang, U. Matulovic, and F. Wagner. "Production of Four Interfacial Active Rhamnolipids from n-Alkanes or Glycerol by Resting Cells of Pseudomonas species DSM 2874." Zeitschrift für Naturforschung C 40, no. 1-2 (1985): 61–67. http://dx.doi.org/10.1515/znc-1985-1-213.
Full textShreve, Gina S., and Ronald Makula. "Characterization of a New Rhamnolipid Biosurfactant Complex from Pseudomonas Isolate DYNA270." Biomolecules 9, no. 12 (2019): 885. http://dx.doi.org/10.3390/biom9120885.
Full textRikalovic, Milena, Miroslav Vrvic, and Ivanka Karadzic. "Rhamnolipid biosurfactant from Pseudomonas aeruginosa: From discovery to application in contemporary technology." Journal of the Serbian Chemical Society 80, no. 3 (2015): 279–304. http://dx.doi.org/10.2298/jsc140627096r.
Full textRikalovic, Milena, Gordana Gojgic-Cvijovic, Miroslav Vrvic, and Ivanka Karadzic. "Production and characterization of rhamnolipids from Pseudomonas aeruginosa san ai." Journal of the Serbian Chemical Society 77, no. 1 (2012): 27–42. http://dx.doi.org/10.2298/jsc110211156r.
Full textWilhelm, Susanne, Aneta Gdynia, Petra Tielen, Frank Rosenau, and Karl-Erich Jaeger. "The Autotransporter Esterase EstA of Pseudomonas aeruginosa Is Required for Rhamnolipid Production, Cell Motility, and Biofilm Formation." Journal of Bacteriology 189, no. 18 (2007): 6695–703. http://dx.doi.org/10.1128/jb.00023-07.
Full textCaiazza, Nicky C., Robert M. Q. Shanks, and G. A. O'Toole. "Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa." Journal of Bacteriology 187, no. 21 (2005): 7351–61. http://dx.doi.org/10.1128/jb.187.21.7351-7361.2005.
Full textEswari, Jujjavarapu S. "Production of Rhamnolipid Biosurfactant from Fed Batch Culture by Pseudomonas aeruginosa using Multiple Substrates." Current Nutrition & Food Science 16, no. 6 (2020): 928–33. http://dx.doi.org/10.2174/1573401314666181107100127.
Full textGhazaei, Ciamak. "Effect of Rhamnolipids on Pathogenicity Characteristics of Microorganisms in Organic Compost." Research in Molecular Medicine 9, no. 1 (2021): 39–50. http://dx.doi.org/10.32598/rmm.9.1.5.
Full textSoares dos Santos, Alexandre, Nei Pereira Jr, and Denise M. G. Freire. "Strategies for improved rhamnolipid production byPseudomonas aeruginosaPA1." PeerJ 4 (May 24, 2016): e2078. http://dx.doi.org/10.7717/peerj.2078.
Full textDyke, M. I. Van, P. Couture, M. Brauer, H. Lee, and J. T. Trevors. "Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil." Canadian Journal of Microbiology 39, no. 11 (1993): 1071–78. http://dx.doi.org/10.1139/m93-162.
Full textChristova, Nelly, Boryana Tuleva, Rashel Cohen, et al. "Chemical Characterization and Physical and Biological Activities of Rhamnolipids Produced by Pseudomonas aeruginosa BN10." Zeitschrift für Naturforschung C 66, no. 7-8 (2011): 394–402. http://dx.doi.org/10.1515/znc-2011-7-811.
Full textCarrazco-Palafox, Jair, Blanca Estela Rivera-Chavira, Jaime Raúl Adame-Gallegos, Luz María Rodríguez-Valdez, Erasmo Orrantia-Borunda, and Guadalupe Virginia Nevárez-Moorillón. "Rhamnolipids from Pseudomonas aeruginosa Rn19a Modifies the Biofilm Formation over a Borosilicate Surface by Clinical Isolates." Coatings 11, no. 2 (2021): 136. http://dx.doi.org/10.3390/coatings11020136.
Full textNickzad, Arvin, Claude Guertin, and Eric Déziel. "Culture Medium Optimization for Production of Rhamnolipids by Burkholderia glumae." Colloids and Interfaces 2, no. 4 (2018): 49. http://dx.doi.org/10.3390/colloids2040049.
Full textYu, Hua, Xiaomei He, Wei Xie, et al. "Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation." Canadian Journal of Microbiology 60, no. 4 (2014): 227–35. http://dx.doi.org/10.1139/cjm-2013-0667.
Full textWang, Shiwei, Shan Yu, Zhenyin Zhang, et al. "Coordination of Swarming Motility, Biosurfactant Synthesis, and Biofilm Matrix Exopolysaccharide Production in Pseudomonas aeruginosa." Applied and Environmental Microbiology 80, no. 21 (2014): 6724–32. http://dx.doi.org/10.1128/aem.01237-14.
Full textCzaplicka, Natalia, Szymon Mania, and Donata Konopacka-Łyskawa. "Influence of Rhamnolipids and Ionic Cross-Linking Conditions on the Mechanical Properties of Alginate Hydrogels as a Model Bacterial Biofilm." International Journal of Molecular Sciences 22, no. 13 (2021): 6840. http://dx.doi.org/10.3390/ijms22136840.
Full textDéziel, Eric, François Lépine, Sylvain Milot, and Richard Villemur. "rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids." Microbiology 149, no. 8 (2003): 2005–13. http://dx.doi.org/10.1099/mic.0.26154-0.
Full textZhang, Lin, Tracey A. Veres-Schalnat, Arpad Somogyi, Jeanne E. Pemberton та Raina M. Maier. "Fatty Acid Cosubstrates Provide β-Oxidation Precursors for Rhamnolipid Biosynthesis in Pseudomonas aeruginosa, as Evidenced by Isotope Tracing and Gene Expression Assays". Applied and Environmental Microbiology 78, № 24 (2012): 8611–22. http://dx.doi.org/10.1128/aem.02111-12.
Full textSha, Ruyi, Zhan Yu, Zhenzhen Wang, et al. "Effects of Rhamnolipids on Enzymatic Hydrolysis of Bamboo Biomass and Mechanism." Journal of Biobased Materials and Bioenergy 14, no. 4 (2020): 453–60. http://dx.doi.org/10.1166/jbmb.2020.1985.
Full textChebbi, Alif, Massimiliano Tazzari, Cristiana Rizzi, et al. "Burkholderia thailandensis E264 as a promising safe rhamnolipids’ producer towards a sustainable valorization of grape marcs and olive mill pomace." Applied Microbiology and Biotechnology 105, no. 9 (2021): 3825–42. http://dx.doi.org/10.1007/s00253-021-11292-0.
Full textRehm, Bernd H. A., Timothy A. Mitsky, and Alexander Steinb�chel. "Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis inEscherichia coli." Applied and Environmental Microbiology 67, no. 7 (2001): 3102–9. http://dx.doi.org/10.1128/aem.67.7.3102-3109.2001.
Full textFauzi, Andrea Gilang, Cut Nanda Sari, Andre Fahriz Perdana Harahap, Muhammad Yusuf Arya Ramadhan, and Misri Gozan. "Process Simulation and Economic Analysis of Rhamnolipid Production by Pseudomonas aeruginosa Using Oil Palm Empty Fruit Bunch as Substrate." Advances in Science and Technology 104 (February 2021): 103–12. http://dx.doi.org/10.4028/www.scientific.net/ast.104.103.
Full textVujović, Bojana, Smilja Teodorović, Željka Rudić, Mile Božić, and Vera Raičević. "Phenotypic heterogeneity of Pseudomonas aeruginosa isolates in the protected nature park ‘Palić’ (Serbia)." Water Supply 16, no. 5 (2016): 1370–77. http://dx.doi.org/10.2166/ws.2016.061.
Full textUgwu, Elijah Chibuzo, Bhaskar Sen Gupta, Adeloye Adebayo, and Nadia Martínez-Villegas. "Column Experiment for the Removal of Cadmium, Copper, Lead and Zinc from Artificially Contaminated Soil using EDTA, Rhamnolipids, and Soapnut." European Journal of Environment and Earth Sciences 2, no. 2 (2021): 1–7. http://dx.doi.org/10.24018/ejgeo.2021.2.2.63.
Full textChristova, Nelly, Petar Petrov, and Lyudmila Kabaivanova. "Biosurfactant Production by Pseudomonas aeruginosa BN10 Cells Entrapped in Cryogels." Zeitschrift für Naturforschung C 68, no. 1-2 (2013): 47–52. http://dx.doi.org/10.1515/znc-2013-1-207.
Full textZulianello, Laurence, Coralie Canard, Thilo Köhler, Dorothée Caille, Jean-Silvain Lacroix, and Paolo Meda. "Rhamnolipids Are Virulence Factors That Promote Early Infiltration of Primary Human Airway Epithelia by Pseudomonas aeruginosa." Infection and Immunity 74, no. 6 (2006): 3134–47. http://dx.doi.org/10.1128/iai.01772-05.
Full textAskitosari, Theresia D., Carola Berger, Till Tiso, Falk Harnisch, Lars M. Blank, and Miriam A. Rosenbaum. "Coupling an Electroactive Pseudomonas putida KT2440 with Bioelectrochemical Rhamnolipid Production." Microorganisms 8, no. 12 (2020): 1959. http://dx.doi.org/10.3390/microorganisms8121959.
Full textEraqi, Walaa A., Aymen S. Yassin, Amal E. Ali, and Magdy A. Amin. "Utilization of Crude Glycerol as a Substrate for the Production of Rhamnolipid by Pseudomonas aeruginosa." Biotechnology Research International 2016 (January 28, 2016): 1–9. http://dx.doi.org/10.1155/2016/3464509.
Full textMishra, Alok K., Rikesh K. Dubey, Shivraj M. Yabaji, and Swati Jaiswal. "Evaluation of antimycobacterial rhamnolipid production from non-cytotoxic strains of Pseudomonas aeruginosa isolated from rhizospheric soil of medicinal plants." International Journal of Biological Research 4, no. 2 (2016): 112. http://dx.doi.org/10.14419/ijbr.v4i2.6429.
Full textPolish, N. V., N. G. Marintsova, A. I. Karkhut, O. S. Yaremkevysh, and O. V. Karpenko. "Antioxidant activity of heterocyclic amino containing derivatives of naphthoquinone and their compositions with surface-active rhamnolipids." Chemistry, Technology and Application of Substances 4, no. 1 (2021): 109–15. http://dx.doi.org/10.23939/ctas2021.01.109.
Full textCampos-García, Jesús, Alma Delia Caro, Rebeca Nájera, Raina M. Miller-Maier, Ragheb A. Al-Tahhan та Gloria Soberón-Chávez. "The Pseudomonas aeruginosa rhlG Gene Encodes an NADPH-Dependent β-Ketoacyl Reductase Which Is Specifically Involved in Rhamnolipid Synthesis". Journal of Bacteriology 180, № 17 (1998): 4442–51. http://dx.doi.org/10.1128/jb.180.17.4442-4451.1998.
Full textGuo, Yan Ping, та Hui Lin. "Biodegradation of 17α-Ethinylestradiol in Sediment/Water Systems Affected by Two Different Rhamnolipidic Homologues". Advanced Materials Research 955-959 (червень 2014): 7–15. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.7.
Full textVaillancourt, Mylene, Sam P. Limsuwannarot, Catherine Bresee, Rahgavi Poopalarajah, and Peter Jorth. "Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence." Antibiotics 10, no. 10 (2021): 1164. http://dx.doi.org/10.3390/antibiotics10101164.
Full textHenkel, Marius, Markus M. Müller, Johannes H. Kügler, et al. "Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production." Process Biochemistry 47, no. 8 (2012): 1207–19. http://dx.doi.org/10.1016/j.procbio.2012.04.018.
Full textAl-Tahhan, Ragheb A., Todd R. Sandrin, Adria A. Bodour, and Raina M. Maier. "Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonas aeruginosa: Effect on Cell Surface Properties and Interaction with Hydrophobic Substrates." Applied and Environmental Microbiology 66, no. 8 (2000): 3262–68. http://dx.doi.org/10.1128/aem.66.8.3262-3268.2000.
Full textTuleva, Borjana, Nelly Christova, Bojidar Jordanov, Boryana Nikolova-Damyanova, and Petar Petrov. "Naphthalene Degradation and Biosurfactant Activity by Bacillus cereus 28BN." Zeitschrift für Naturforschung C 60, no. 7-8 (2005): 577–82. http://dx.doi.org/10.1515/znc-2005-7-811.
Full textDavey, Mary E., Nicky C. Caiazza, and George A. O'Toole. "Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1." Journal of Bacteriology 185, no. 3 (2003): 1027–36. http://dx.doi.org/10.1128/jb.185.3.1027-1036.2003.
Full textKARPENKO, Іlоna, Galyna MIDYANA, Olena KARPENKO, Igor SEMENIUK, Stepan MIDYANYY, and Olena PAL’CHIKOVA. "APPLICATION OF EXTRACTION METHOD FOR ISOLATION OF BIOGENIC SURFACE-ACTIVE RHAMNOLIPIDS." Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2020, no. 60 (2020): 7–13. http://dx.doi.org/10.37827/ntsh.chem.2020.60.007.
Full textAllegrone, Gianna, Chiara Ceresa, Maurizio Rinaldi, and Letizia Fracchia. "Diverse Effects of Natural and Synthetic Surfactants on the Inhibition of Staphylococcus aureus Biofilm." Pharmaceutics 13, no. 8 (2021): 1172. http://dx.doi.org/10.3390/pharmaceutics13081172.
Full textNaspolini, Bianca Ferrazzo, Antonio Carlos de Oliveira Machado, Walter Barreiro Cravo Junior, Denise Maria Guimarães Freire, and Magali Christe Cammarota. "Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy." BioMed Research International 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/8986165.
Full textKöhler, Thilo, Jean-Luc Dumas, and Christian Van Delden. "Ribosome Protection Prevents Azithromycin-Mediated Quorum-Sensing Modulation and Stationary-Phase Killing of Pseudomonas aeruginosa." Antimicrobial Agents and Chemotherapy 51, no. 12 (2007): 4243–48. http://dx.doi.org/10.1128/aac.00613-07.
Full textZheng, Hewen, Nischal Singh, Gauri S. Shetye, Yucheng Jin, Diana Li, and Yan-Yeung Luk. "Synthetic analogs of rhamnolipids modulate structured biofilms formed by rhamnolipid-nonproducing mutant of Pseudomonas aeruginosa." Bioorganic & Medicinal Chemistry 25, no. 6 (2017): 1830–38. http://dx.doi.org/10.1016/j.bmc.2017.01.042.
Full textWoźniak-Karczewska, Marta, Kamila Myszka, Agata Sznajdrowska, et al. "Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners." New Biotechnology 36 (May 2017): 17–25. http://dx.doi.org/10.1016/j.nbt.2016.12.008.
Full textSohail, Rafeya, and Nazia Jamil. "Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel based carbon sources." Green Processing and Synthesis 9, no. 1 (2019): 77–86. http://dx.doi.org/10.1515/gps-2020-0009.
Full textBakkar, Marwa Reda, Ahmed Hassan Ibrahim Faraag, Elham R. S. Soliman, et al. "Rhamnolipids Nano-Micelles as a Potential Hand Sanitizer." Antibiotics 10, no. 7 (2021): 751. http://dx.doi.org/10.3390/antibiotics10070751.
Full textThomidis, Thomas, Ioanna Prodromou та Argyrios Farmakis. "Rhamnolipids: The Next Generation Multifunctional Biomolecules for Applications Against Μeloidogyne incognita in Tomato Plants". Journal of Agricultural Science 13, № 9 (2021): 93. http://dx.doi.org/10.5539/jas.v13n9p93.
Full textLiu, Jianfei, Yuru Wang, and Huifang Li. "Synergistic Solubilization of Phenanthrene by Mixed Micelles Composed of Biosurfactants and a Conventional Non-Ionic Surfactant." Molecules 25, no. 18 (2020): 4327. http://dx.doi.org/10.3390/molecules25184327.
Full text