Journal articles on the topic 'Rheolog Ionic strength'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 journal articles for your research on the topic 'Rheolog Ionic strength.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kopplin, Georg, Anders Lervik, Kurt I. Draget, and Finn L. Aachmann. "Alginate gels crosslinked with chitosan oligomers – a systematic investigation into alginate block structure and chitosan oligomer interaction." RSC Advances 11, no. 23 (2021): 13780–98. http://dx.doi.org/10.1039/d1ra01003d.
Full textTan, Beng H., Kam C. Tam, Yee C. Lam, and Chee B. Tan. "Microstructure and Rheology of Stimuli-Responsive Nanocolloidal SystemsEffect of Ionic Strength." Langmuir 20, no. 26 (2004): 11380–86. http://dx.doi.org/10.1021/la0481290.
Full textLin, Yuan, Huaitao Qin, Jin Guo, and Jiawang Chen. "Rheology of bentonite dispersions: Role of ionic strength and solid content." Applied Clay Science 214 (November 2021): 106275. http://dx.doi.org/10.1016/j.clay.2021.106275.
Full textMOHAMMADI, ALIASGHAR, and REGHAN J. HILL. "Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels." Journal of Fluid Mechanics 669 (January 14, 2011): 298–327. http://dx.doi.org/10.1017/s0022112010005045.
Full textWeijers, M., L. M. C. Sagis, C. Veerman, B. Sperber, and E. van der Linden. "Rheology and structure of ovalbumin gels at low pH and low ionic strength." Food Hydrocolloids 16, no. 3 (2002): 269–76. http://dx.doi.org/10.1016/s0268-005x(01)00097-2.
Full textChoppe, Emilie, Fanny Puaud, Taco Nicolai, and Lazhar Benyahia. "Rheology of xanthan solutions as a function of temperature, concentration and ionic strength." Carbohydrate Polymers 82, no. 4 (2010): 1228–35. http://dx.doi.org/10.1016/j.carbpol.2010.06.056.
Full textShafiei-Sabet, S., W. Y. Hamad, and S. G. Hatzikiriakos. "Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions." Cellulose 21, no. 5 (2014): 3347–59. http://dx.doi.org/10.1007/s10570-014-0407-z.
Full textLiu, Jun, Youn Young Shim, and Martin J. T. Reaney. "Ionic strength and hydrogen bonding effects on whey protein isolate–flaxseed gum coacervate rheology." Food Science & Nutrition 8, no. 4 (2020): 2102–11. http://dx.doi.org/10.1002/fsn3.1504.
Full textBhosale, Prasad S., and John C. Berg. "Poly(acrylic acid) as a rheology modifier for dense alumina dispersions in high ionic strength environments." Colloids and Surfaces A: Physicochemical and Engineering Aspects 362, no. 1-3 (2010): 71–76. http://dx.doi.org/10.1016/j.colsurfa.2010.03.043.
Full textSovilj, Verica, Petar Dokic, and Lidija Petrovic. "Rheologycal properties of sodium carboxymethylcellulose in the presence of electrolyte and mixed micelle of surfactants." Acta Periodica Technologica, no. 34 (2003): 71–82. http://dx.doi.org/10.2298/apt0334071s.
Full textChai, Changhoon, Jooyoung Lee та Qingrong Huang. "The effect of ionic strength on the rheology of pH-induced bovine serum albumin/κ-carrageenan coacervates". LWT - Food Science and Technology 59, № 1 (2014): 356–60. http://dx.doi.org/10.1016/j.lwt.2014.05.024.
Full textChang, S. H., M. H. Ryan, and R. K. Gupta. "The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions." Rheologica Acta 32, no. 3 (1993): 263–69. http://dx.doi.org/10.1007/bf00434190.
Full textUlaganathan, V., I. Retzlaff, J. Y. Won та ін. "β-Lactoglobulin adsorption layers at the water/air surface: 2. Dilational rheology: Effect of pH and ionic strength". Colloids and Surfaces A: Physicochemical and Engineering Aspects 521 (травень 2017): 167–76. http://dx.doi.org/10.1016/j.colsurfa.2016.08.064.
Full textHe, Jin-Song, Norihiro Azuma, and Hongwei Yang. "Effects of pH and ionic strength on the rheology and microstructure of a pressure-induced whey protein gel." International Dairy Journal 20, no. 2 (2010): 89–95. http://dx.doi.org/10.1016/j.idairyj.2009.08.006.
Full textFneich, Fatima, Julien Ville, Bastien Seantier, and Thierry Aubry. "Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength." Carbohydrate Polymers 211 (May 2019): 315–21. http://dx.doi.org/10.1016/j.carbpol.2019.01.099.
Full textIllner, Sabine, Olga Sahmel, Stefan Siewert, Thomas Eickner, and Niels Grabow. "Rheological analysis of hybrid hydrogels during polymerization processes." Current Directions in Biomedical Engineering 3, no. 2 (2017): 699–702. http://dx.doi.org/10.1515/cdbme-2017-0148.
Full textMeijerink, Marc, Frank van Mastrigt, Linda E. Franken, Marc C. A. Stuart, Francesco Picchioni, and Patrizio Raffa. "Triblock copolymers of styrene and sodium methacrylate as smart materials: synthesis and rheological characterization." Pure and Applied Chemistry 89, no. 11 (2017): 1641–58. http://dx.doi.org/10.1515/pac-2016-1021.
Full textYan, Hui, Antti Nykanen, Janne Ruokolainen, David Farrar, and Aline F. Miller. "Protein Fibrillar Hydrogels for three-Dimensional Tissue Engineering." Research Letters in Nanotechnology 2009 (2009): 1–4. http://dx.doi.org/10.1155/2009/614301.
Full textRühs, Patrick A., Nathalie Scheuble, Erich J. Windhab, Raffaele Mezzenga та Peter Fischer. "Simultaneous Control of pH and Ionic Strength during Interfacial Rheology of β-Lactoglobulin Fibrils Adsorbed at Liquid/Liquid Interfaces". Langmuir 28, № 34 (2012): 12536–43. http://dx.doi.org/10.1021/la3026705.
Full textCosta, Vera L. D., Ana P. Costa, and Rogério M. S. Simões. "Nanofibrillated cellulose rheology: Effects of morphology, ethanol/acetone addition, and high NaCl concentration." BioResources 14, no. 4 (2019): 7636–54. http://dx.doi.org/10.15376/biores.14.4.7636-7654.
Full textSaxena, Amit, A. K. Pathak, and Keka Ojha. "Synergistic Effects of Ionic Characteristics of Surfactants on Aqueous Foam Stability, Gel Strength, and Rheology in the Presence of Neutral Polymer." Industrial & Engineering Chemistry Research 53, no. 49 (2014): 19184–91. http://dx.doi.org/10.1021/ie502598s.
Full textTerech, P., S. Dourdain, U. Maitra, and S. Bhat. "Structure and Rheology of Cationic Molecular Hydrogels of Quinuclidine Grafted Bile Salts. Influence of the Ionic Strength and Counter-Ion type." Journal of Physical Chemistry B 113, no. 14 (2009): 4619–30. http://dx.doi.org/10.1021/jp809336g.
Full textRaffa, Patrizio, Piter Brandenburg, Diego A. Z. Wever, Antonius A. Broekhuis, and Francesco Picchioni. "Polystyrene–Poly(sodium methacrylate) Amphiphilic Block Copolymers by ATRP: Effect of Structure, pH, and Ionic Strength on Rheology of Aqueous Solutions." Macromolecules 46, no. 17 (2013): 7106–11. http://dx.doi.org/10.1021/ma401453j.
Full textXiong, Wenfei, Cong Ren, Mo Tian, Xuejun Yang, Jing Li, and Bin Li. "Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide." Food Hydrocolloids 73 (December 2017): 41–50. http://dx.doi.org/10.1016/j.foodhyd.2017.06.031.
Full textDiGuiseppi, David, Jodi Kraus, Siobhan E. Toal, Nicolas Alvarez, and Reinhard Schweitzer-Stenner. "Investigating the Formation of a Repulsive Hydrogel of a Cationic 16mer Peptide at Low Ionic Strength in Water by Vibrational Spectroscopy and Rheology." Journal of Physical Chemistry B 120, no. 38 (2016): 10079–90. http://dx.doi.org/10.1021/acs.jpcb.6b07673.
Full textChirkov, Nikolay S., Richard A. Campbell, Alexander V. Michailov, Petr S. Vlasov, and Boris A. Noskov. "DNA Interaction with a Polyelectrolyte Monolayer at Solution—Air Interface." Polymers 13, no. 16 (2021): 2820. http://dx.doi.org/10.3390/polym13162820.
Full textFeng, Tingting, Xingwei Wang, Xuejiao Wang, Shuqin Xia, and Qingrong Huang. "Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure." LWT 150 (October 2021): 111953. http://dx.doi.org/10.1016/j.lwt.2021.111953.
Full textTheng, B. K. G., and N. Wells. "The flow characteristics of halloysite suspensions." Clay Minerals 30, no. 2 (1995): 99–106. http://dx.doi.org/10.1180/claymin.1995.030.2.02.
Full textNASIRUDDIN KHAN, M., and ANILA SARWAR. "DETERMINATION OF POINTS OF ZERO CHARGE OF NATURAL AND TREATED ADSORBENTS." Surface Review and Letters 14, no. 03 (2007): 461–69. http://dx.doi.org/10.1142/s0218625x07009517.
Full textLee, Minhyeong, Jooyoung Im, Gye-Chun Cho, Hee Hwan Ryu, and Ilhan Chang. "Interfacial Shearing Behavior along Xanthan Gum Biopolymer-Treated Sand and Solid Interfaces and Its Meaning in Geotechnical Engineering Aspects." Applied Sciences 11, no. 1 (2020): 139. http://dx.doi.org/10.3390/app11010139.
Full textClancy, S. F., J. G. Fuller, T. Scheidt, and H. H. Paradies. "Dynamic Properties of Entangled Wormlike Micelles: Sodium Laurylethersulfate at High Ionic Strength-(II)." Zeitschrift für Physikalische Chemie 215, no. 7 (2001). http://dx.doi.org/10.1524/zpch.2001.215.7.905.
Full textBiswas, Tuser T., Junchun Yu, and Vincent A. Nierstrasz. "Effects of ink characteristics and piezo-electric inkjetting parameters on lysozyme activity." Scientific Reports 9, no. 1 (2019). http://dx.doi.org/10.1038/s41598-019-54723-9.
Full text