To see the other types of publications on this topic, follow the link: RHEOLOGY OF THE SOLUTIONS.

Journal articles on the topic 'RHEOLOGY OF THE SOLUTIONS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'RHEOLOGY OF THE SOLUTIONS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Umerova, Saide O., Iryna O. Dulina, and Andrey V. Ragulya. "Rheology of plasticized polymer solutions." Epitoanyag - Journal of Silicate Based and Composite Materials 67, no. 4 (2015): 119–25. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2015.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tirtaatmadja, Viyada, Dave E. Dunstan, and David V. Boger. "Rheology of dextran solutions." Journal of Non-Newtonian Fluid Mechanics 97, no. 2-3 (2001): 295–301. http://dx.doi.org/10.1016/s0377-0257(00)00226-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goncharov, Dmitry B., and Alexey G. Sukovatyi. "Rheology of Polyhydroxyalkanoate Solutions." Journal of Siberian Federal University. Biology 9, no. 2 (2016): 190–97. http://dx.doi.org/10.17516/1997-1389-2016-9-2-190-197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Navard, P., and J. M. Haudin. "Rheology of hydroxypropylcellulose solutions." Journal of Polymer Science Part B: Polymer Physics 24, no. 1 (1986): 189–201. http://dx.doi.org/10.1002/polb.1986.180240118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoffmann, H., H. Löbl, H. Rehage, and I. Wunderlich. "Rheology of Surfactant Solutions." Tenside Surfactants Detergents 22, no. 6 (1985): 290–98. http://dx.doi.org/10.1515/tsd-1985-220616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Takehiro, Issei Moriwaki, and Ryotaro Yamasaki. "Apparent Dynamic Surface Tension of Polymer Solutions." Nihon Reoroji Gakkaishi 45, no. 4 (2017): 181–83. http://dx.doi.org/10.1678/rheology.45.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zaner, K. S., R. G. King, J. Newman, K. L. Schick, R. Furukawa, and B. R. Ware. "Rheology of G-actin solutions." Journal of Biological Chemistry 263, no. 15 (1988): 7186–89. http://dx.doi.org/10.1016/s0021-9258(18)68625-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Santamaría, Antonio, M. Isabel Lizaso, and M. Eugenia Muñoz. "Rheology of ethyl cellulose solutions." Macromolecular Symposia 114, no. 1 (1997): 109–19. http://dx.doi.org/10.1002/masy.19971140112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Boris, David C., and Ralph H. Colby. "Rheology of Sulfonated Polystyrene Solutions." Macromolecules 31, no. 17 (1998): 5746–55. http://dx.doi.org/10.1021/ma971884i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dharmaraj, Vishnu L., P. Douglas Godfrin, Yun Liu, and Steven D. Hudson. "Rheology of clustering protein solutions." Biomicrofluidics 10, no. 4 (2016): 043509. http://dx.doi.org/10.1063/1.4955162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chassenieux, Christophe, Taco Nicolai, and Lazhar Benyahia. "Rheology of associative polymer solutions." Current Opinion in Colloid & Interface Science 16, no. 1 (2011): 18–26. http://dx.doi.org/10.1016/j.cocis.2010.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vink, Hans. "Rheology of dilute polyelectrolyte solutions." Polymer 33, no. 17 (1992): 3711–16. http://dx.doi.org/10.1016/0032-3861(92)90660-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ketz, R. J., R. K. Prud'homme, and W. W. Graessley. "Rheology of concentrated microgel solutions." Rheologica Acta 27, no. 5 (1988): 531–39. http://dx.doi.org/10.1007/bf01329353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sato, Ana C. K., Pablo R. Oliveira, and Rosiane L. Cunha. "Rheology of Mixed Pectin Solutions." Food Biophysics 3, no. 1 (2008): 100–109. http://dx.doi.org/10.1007/s11483-008-9058-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Quintas, M., T. R. S. Brandão, C. L. M. Silva, and R. L. Cunha. "Rheology of supersaturated sucrose solutions." Journal of Food Engineering 77, no. 4 (2006): 844–52. http://dx.doi.org/10.1016/j.jfoodeng.2005.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Han, Aijie, and Ralph H. Colby. "Rheology of Entangled Polyelectrolyte Solutions." Macromolecules 54, no. 3 (2021): 1375–87. http://dx.doi.org/10.1021/acs.macromol.0c02437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hao, Hu, and Yoshiaki Takahashi. "Dynamic Viscoelastic Properties of Dilute Pullulan Ionic Liquids Solutions." Nihon Reoroji Gakkaishi 45, no. 3 (2017): 133–38. http://dx.doi.org/10.1678/rheology.45.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Picout, David R., and Simon B. Ross-Murphy. "Rheology of Biopolymer Solutions and Gels." Scientific World JOURNAL 3 (2003): 105–21. http://dx.doi.org/10.1100/tsw.2003.15.

Full text
Abstract:
Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio) polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute) and gel properties is described.
APA, Harvard, Vancouver, ISO, and other styles
19

Nakajima, Nobuyuki. "Academic Rheology and Industrial Rheology." Applied Rheology 9, no. 3 (1999): 116–25. http://dx.doi.org/10.1515/arh-2009-0009.

Full text
Abstract:
Abstract This paper is an attempt to highlight the problems faced by industrial rheologists. The problems are far more complex than subjects of usual academic pursuit. Because of the lack of scientific methods in both theory and instruments, the industrial rheologist often resort to empirical approach such as a use of the processing machines for processability evaluation. More fundamental approach is desirable. The examples are taken from high density polyethylenes and the period was 1960-1970. Although industry found solutions to the problems, the fundamental understandings have not been deve
APA, Harvard, Vancouver, ISO, and other styles
20

Шипунов (Shipunov), Борис (Boris) Павлович (Pavlovich), Виталий (Vitalii) Евгеньевич (Evgen'evich) Коптев (Koptev), and Вадим (Vadim) Иванович (Ivanovich) Маркин (Markin). "FEATURES OF RHEOLOGY OF AGAR-AGAR SOLUTIONS." chemistry of plant raw material, no. 1 (February 4, 2018): 53–60. http://dx.doi.org/10.14258/jcprm.2018013720.

Full text
Abstract:
The article presents the results of experiments on studying of rheological behaviour of dilute solutions of agar-agar. The chosen range of concentration 0,1–0,7% allows to avoid gelation at ambient temperature. Dependence of viscosity and shear stress on concentration, shearing speed and temperature in an interval 25–45 °С is investigated. It was found that the concentration dependence of viscosity severely depends on the shear speed, a nonlinearity is observed that increases with decreasing shear speed. The dependence of the viscosity on the shear speed for concentrations of 0,3–0,7% has a si
APA, Harvard, Vancouver, ISO, and other styles
21

Hu, Hao, Akihiko Takada, and Yoshiaki Takahashi. "Intrinsic Viscosity of Pullulan in Ionic Liquid Solutions Studied by Rheometry." Nihon Reoroji Gakkaishi 42, no. 3 (2014): 191–96. http://dx.doi.org/10.1678/rheology.42.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sato, Takahiro, Shin-ichi Yamamoto, Toshikazu Takigawa, and Toshiro Masuda. "Zero-Shear Viscosity of Aqueous Solutions of Sodium Hyarulonate: Analysis as Semiflexible Polymer Solutions." Nihon Reoroji Gakkaishi 29, no. 4 (2001): 201–4. http://dx.doi.org/10.1678/rheology.29.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nishinari, Katsuyoshi, Yutaka Tanaka, and Hisamoto Furuse. "Viscosity Behavior of Xanthan Solutions Measured as a Function of Shear Rate." Nihon Reoroji Gakkaishi 43, no. 1 (2015): 21–26. http://dx.doi.org/10.1678/rheology.43.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Moura, M. J., M. M. Figueiredo, and M. Helena Gil. "Rheology of Chitosan and Genipin Solutions." Materials Science Forum 587-588 (June 2008): 27–31. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.27.

Full text
Abstract:
This paper investigates the rheological behaviour of chitosan solutions crosslinked with different concentrations of genipin at body temperature and physiological pH. The effect of the crosslinker concentration on the rheological properties of hydrogels was evaluated. The oscillatory time sweep was used to analyze the dynamics of G’ during in situ gelation experiments enabling the determination of the gelation time. Additionally, the stress and frequency sweeps were employed to measure G’ of cured hydrogels. The solutions of chitosan crosslinked with genipin at physiological conditions were fo
APA, Harvard, Vancouver, ISO, and other styles
25

Clausen, T. M., P. K. Vinson, J. R. Minter, H. T. Davis, Y. Talmon, and W. G. Miller. "Viscoelastic micellar solutions: microscopy and rheology." Journal of Physical Chemistry 96, no. 1 (1992): 474–84. http://dx.doi.org/10.1021/j100180a086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Muller, Frans L., and John F. Davidson. "Rheology of Shear Thinning Polymer Solutions." Industrial & Engineering Chemistry Research 33, no. 10 (1994): 2364–67. http://dx.doi.org/10.1021/ie00034a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Noskov, B. A., and A. G. Bykov. "Dilational surface rheology of polymer solutions." Russian Chemical Reviews 84, no. 6 (2015): 634–52. http://dx.doi.org/10.1070/rcr4518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Quinzani, L. M., G. H. McKinley, R. A. Brown, and R. C. Armstrong. "Modeling the rheology of polyisobutylene solutions." Journal of Rheology 34, no. 5 (1990): 705–48. http://dx.doi.org/10.1122/1.550148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shambilova, G. K., E. A. Pavlyuchkova, V. A. Govorov, I. V. Gumennyi, A. A. Taltenov, and A. Ya Malkin. "Rheology of Polysulfone and Its Solutions." Polymer Science, Series A 61, no. 2 (2019): 208–14. http://dx.doi.org/10.1134/s0965545x19020111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Isambert, H., and A. C. Maggs. "Dynamics and Rheology of Actin Solutions." Macromolecules 29, no. 3 (1996): 1036–40. http://dx.doi.org/10.1021/ma946418x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wientjes, Roland H. W., Michel H. G. Duits, Rob J. J. Jongschaap, and Jorrit Mellema. "Linear Rheology of Guar Gum Solutions." Macromolecules 33, no. 26 (2000): 9594–605. http://dx.doi.org/10.1021/ma001065p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sammons, R. J., J. R. Collier, T. G. Rials, and S. Petrovan. "Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology." Journal of Applied Polymer Science 110, no. 2 (2008): 1175–81. http://dx.doi.org/10.1002/app.28733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sammons, Rhea J., John R. Collier, Timothy G. Rials, and Simioan Petrovan. "Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. III. Elongational rheology." Journal of Applied Polymer Science 110, no. 5 (2008): 3203–8. http://dx.doi.org/10.1002/app.28928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

SATO, Takahiro. "Rheological Properties of Stiff-Chain Polymer Solutions." Nihon Reoroji Gakkaishi 27, no. 4 (1999): 205–12. http://dx.doi.org/10.1678/rheology.27.205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shikata, Toshiyuki. "Viscoelastic Behavior of Aqueous Surfactant Micellar Solutions." Nihon Reoroji Gakkaishi 31, no. 1 (2003): 23–32. http://dx.doi.org/10.1678/rheology.31.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lee, Jung Myoung, John A. Heitmann, and Joel J. Pawlak. "Rheology of carboxymethyl cellulose solutions treated with cellulases." BioResources 2, no. 1 (2007): 20–33. http://dx.doi.org/10.15376/biores.2.1.20-33.

Full text
Abstract:
The effect of cellulase treatments on the rheology of carboxymethyl cellulose (CMC) solutions was studied using a rotational viscometer. The rheological behaviors of CMC solutions of different molecular mass and degrees of substitution where studied as a function of time after various treatments. These solutions were subjected to active and heat-denatured cellulase, a cationic polyelectrolyte (C-PAM), as well as different shear rates. A complex protein-polymer interaction was observed, leading to a potential error source in the measurement of enzymatic activity by changes in the intrinsic visc
APA, Harvard, Vancouver, ISO, and other styles
37

Sato, Hideki, Hiroshi Suzuki, Ruri Hidema, and Yoshiyuki Komoda. "Effects of the Molar Ratio of Counter-Ions on Flow Characteristics of Surfactant Solutions Sweeping Cavities." Nihon Reoroji Gakkaishi 44, no. 3 (2016): 143–51. http://dx.doi.org/10.1678/rheology.44.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kathirgamanathan, Kalyani, Warren J. Grigsby, Jafar Al-Hakkak, and Neil R. Edmonds. "Two-Dimensional FTIR as a Tool to Study the Chemical Interactions within Cellulose-Ionic Liquid Solutions." International Journal of Polymer Science 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/958653.

Full text
Abstract:
In this study two-dimensional FTIR analysis was applied to understand the temperature effects on processing cellulose solutions in imidazolium-based ionic liquids. Analysis of the imidazolium ionνC2–H peak revealed hydrogen bonding within cellulose solutions to be dynamic on heating and cooling. The extent of hydrogen bonding was stronger on heating, consistent with greater ion mobility at higher temperature when the ionic liquid network structure is broken. At ambient temperatures a blue shiftedνC2–H peak was indicative of greater cation-anion interactions, consistent with the ionic liquid ne
APA, Harvard, Vancouver, ISO, and other styles
39

Gómez-Dı́az, Diego, and José M. Navaza. "Rheology of aqueous solutions of food additives." Journal of Food Engineering 56, no. 4 (2003): 387–92. http://dx.doi.org/10.1016/s0260-8774(02)00211-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Marrucci, G., F. Greco, and G. Ianniruberto. "Rheology of polymer melts and concentrated solutions." Current Opinion in Colloid & Interface Science 4, no. 4 (1999): 283–87. http://dx.doi.org/10.1016/s1359-0294(99)90002-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fu, Dejing, and Curtis L. Weller. "Rheology of Zein Solutions in Aqueous Ethanol†." Journal of Agricultural and Food Chemistry 47, no. 5 (1999): 2103–8. http://dx.doi.org/10.1021/jf9811121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ortiz, M., D. De Kee, and P. J. Carreau. "Rheology of concentrated poly(ethylene oxide) solutions." Journal of Rheology 38, no. 3 (1994): 519–39. http://dx.doi.org/10.1122/1.550472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Walker, Lynn M., Norman J. Wagner, Ron G. Larson, Peter A. Mirau, and Paula Moldenaers. "The rheology of highly concentrated PBLG solutions." Journal of Rheology 39, no. 5 (1995): 925–52. http://dx.doi.org/10.1122/1.550624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Picken, S. J. "Phase transitions and rheology of aramid solutions." Liquid Crystals 5, no. 5 (1989): 1635–43. http://dx.doi.org/10.1080/02678298908027798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

MARTÍNEZ, A., E. CHORNET, and D. RODRIGUE. "STEADY-SHEAR RHEOLOGY OF CONCENTRATED CHITOSAN SOLUTIONS." Journal of Texture Studies 35, no. 1 (2004): 53–74. http://dx.doi.org/10.1111/j.1745-4603.2004.tb00822.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

de Vasconcelos, C?L, R?R Martins, M?O Ferreira, M?R Pereira, and J?L?C Fonseca. "Rheology of polyurethane solutions with different solvents." Polymer International 51, no. 1 (2001): 69–74. http://dx.doi.org/10.1002/pi.800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Petrovan, S., J. R. Collier, and G. H. Morton. "Rheology of cellulosicN-methylmorpholine oxide monohydrate solutions." Journal of Applied Polymer Science 77, no. 6 (2000): 1369–77. http://dx.doi.org/10.1002/1097-4628(20000808)77:6<1369::aid-app24>3.0.co;2-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rothstein, Jonathan P. "Transient extensional rheology of wormlike micelle solutions." Journal of Rheology 47, no. 5 (2003): 1227–47. http://dx.doi.org/10.1122/1.1603242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Andrady, Anthony L., Carlos M. Nunez, Bor-Sen Chiou, and Saad A. Khan. "Rheology of concentrated solutions of hyperbranched polyesters." Polymer Engineering & Science 42, no. 11 (2002): 2065–71. http://dx.doi.org/10.1002/pen.11097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Karakashev, Stoyan I., Nikolay Grozev, Isabel Díez, Robin H. A. Ras, and Roumen Tsekov. "Rheology of silver nanocluster solutions under confinement." Colloids and Surfaces A: Physicochemical and Engineering Aspects 384, no. 1-3 (2011): 570–73. http://dx.doi.org/10.1016/j.colsurfa.2011.05.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!