Contents
Academic literature on the topic 'Riccati, Équation de – Solutions numériques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riccati, Équation de – Solutions numériques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Riccati, Équation de – Solutions numériques"
El-Moallem, Rola. "Extrapolation vectorielle et applications aux méthodes itératives pour résoudre des équations algébriques de Riccati." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10180/document.
Full textIn this thesis, we are interested in the study of polynomial extrapolation methods and their application as convergence accelerators on iterative methods to solve Algebraic Riccati equations arising in transport theory . In such applications, polynomial extrapolation methods succeed to accelerate the convergence of these iterative methods, even when the convergence turns to be extremely slow.The advantage of these methods of extrapolation is that they use a sequence of vectors which is not necessarily convergent, or which converges very slowly to create a new sequence which can admit a quadratic convergence. Furthermore, the development of restarted (or cyclic) methods allows to limit the cost of computations and storage. An interpretation of the critical case where the Jacobian matrix at the required solution is singular and quadratic convergence turns to linear is made. This problem can be overcome by applying a suitable shift technique. The original equation is transformed into an equivalent Riccati equation where the singularity is removed while the matrix coefficients maintain the same structure as in the original equation. The nice feature of this transformation is that the new equation has the same solution as the original one although the new Jacobian matrix at the solution is nonsingular. Numerical experiments and comparisons which confirm the effectiveness of the new approaches are reported
Badra, Mehdi. "Stabilisation par feedback et approximation des équations de Navier-Stokes." Toulouse 3, 2006. http://www.theses.fr/2006TOU30242.
Full textThis thesis deals with some feedback stabilization problems for the Navier-Stokes equations around an unstable stationary solution. The case of a distributed control localized in a part of the geomatrical domain and the case of a boundary control are considered. The control is expressed in function of the velocity field by a linear feedback law. The feedback law is provided by an algebraic Riccati equation which is obtained with the tools of the optimal control theory. The question of approximating such controlled systems is also considered. We first study the approximation of the linearized Navier-Stokes equations (the so-called Oseen equations) for rough boundary and divergence data. General error estimates are given and Galerkin methods are investigated. We also prove a general nonconform approximation theorem for closed-loop systems obtained from the Riccati theory. We apply this theorem to study the approximation of the Oseen closed-loop system
Cébron, Benoît. "Commande de systèmes dynamiques hybrides." Angers, 2000. http://www.theses.fr/2000ANGE0022.
Full textA dynamic system is said to be hybrid (sdh) when discrete and continuous variables interact. The development of specific representation, analysis and control methods is required to take into account the complexity of these systems. A classification of sdhs is proposed according to the types of hybrid phenomena considered: controlled or autonomous model switching, controlled or autonomous state vector jumps. Control problems are then posed and analysed for each class presented. The search for an optimal control is posed as a problem of minimisation of a criterion of deviation between a calculated trajectory and a desired trajectory. A descent method is applied in each case; it uses the expression of the gradient of the criterion. The latter is calculated from the solution of an adjoint system. We show how to calculate this adjoint system by adapting the general principles of the calculation of variations to the cases considered. This is how discontinuities appear on the adjoint state, for which explicit expressions are given. These discontinuities can be found in the calculated control. The minimization of the criterion is first performed without constraints and then with bound constraints on the control and on its derivative, by implementing the uzawa method. The state feedback control problem is addressed for the classes of sdh with controlled and autonomous model switching. This leads to the solution of riccati equations. Each case studied is illustrated by a numerical implementation which allows to judge the efficiency of the proposed method, in terms of accuracy and computation time, and to conclude that it is possible to control sdhs by these methods
Oumri, Mohamed. "Diagnostic des défauts de réseaux électriques filaires par la réflectométrie." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112090/document.
Full textThis thesis focuses on fault diagnosis of wired electric networks using reflectometry. To develop diagnostic algorithms, we studied the direct problem (numerical simulations of electrical networks) and the inverse problem (determination of certain properties of a network from reflectometry measurements). For the direct problem, we developed a method for the computation of reflection coefficients. This method is based on the successive solving for a Riccati differential equation. We also generalized the BLT equation for the nonuniform electric networks and automated the resolution of this method. The thesis has made two new results concerning the inverse problem. The first result concerns the estimation of lengths and loss coefficients of the branches of a star network via an iterative method. The second focuses on the identification, at least partially, of the branches admittance matrices of a electric network modeled by the equation of BLT. The methodologies and formalisms proposed in this thesis are validated either by numerical simulations or by real measurements
Aït-Mokhtar, Sadjia. "Sur les singularités dans le champ complexe des solutions de certaines équations différentielles singulièrement perturbées." La Rochelle, 2003. http://www.theses.fr/2003LAROS107.
Full textMondoloni, Antoine. "Existence d'une solution faible d'une équation d'onde quasi-linéaire avec conditions aux limites." Corte, 2000. http://www.theses.fr/2000CORT3052.
Full textDarbas, Marion. "Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de diffraction d'ondes." Toulouse, INSA, 2004. http://www.theses.fr/2004ISAT0028.
Full textThis thesis deals with fast numerical processes to solve scattering problems of acoustic or electromagnetic waves. The essential used technique consists in coupling the integral equations method with the On-Surface Radiation Conditions (OSRC) method deriving microlocal approximations of the Dirichlet-Neumann operator in the high frequency regime. More particularly, we use OSRC to accelerate the convergence of the iterative methods considered to solve integral equations. We develop two studies : open surfaces and closed surfaces. In the case of open surfaces, OSRC represent some efficient analytic Calderon-type preconditioners. In the case of closed surfaces, OSRC designate some regularizing operators and lead to the construction of second-kind Fredholm integral equations. These equations are well-adapted to an iterative solution. Their construction is based on obtaining an excellent eigenvalues clustering of the associated operators. Two-dimensional and three-dimensional numerical tests confirm the theoritical analysis. They show that good convergence rates of the iterative solvers are attained. The convergence is independent of the mesh refinement and of the wave number
Dujardin, Guillaume. "Étude de schémas de discrétisation en temps de l’équation de Schrödinger." Rennes 1, 2008. ftp://ftp.irisa.fr/techreports/theses/2008/dujardin.pdf.
Full textCette thèse consiste en l'analyse numérique de méthodes de résolution d'équations aux dérivées partielles de type Schrödinger : sur le tore de dimension d, on s'intéresse à la résolution numérique de l'équation de Schrödinger linaire avec potentiel multiplicatif, de l'équation de Schrödinger linéaire inhomogène et de l'équation de Schrödinger non linéaire. Dans une première partie, on étudie des méthodes de splitting en temps, symplectiques, pour l'équation de Schrödinger linéaire avec potentiel multiplicatif. Dans l'asymptotique des petits potentiels, on démontre par une méthode perturbative un théorème de forme normale pour le propagateur de ces méthodes. Ce théorème permet ensuite de démontrer des propriétés de conservation en temps long de la régularité de la solution numérique pour des pas de temps non résonnants. La seconde partie est consacrée à l'analyse numérique de méthodes de Runge-Kutta exponentielles pour l'équation de Schrödinger linéaire inhomogène et pour l'équation de Schrödinger non linéaire. Dans une perspective d'ordre élevé et en temps fini, on donne des conditions suffisantes pour que les méthodes de collocation à s points soient d'ordre s, s+1 et s+2 pour les deux types de problèmes envisagés. On illustre, quantifie et explique en outre l'effet des résonnances numériques qui apparaissent lors de la résolution des problèmes linéaires inhomogènes par de telles méthodes
Aïssani, Amel. "Sur la déformation d'un fil élastique et sur l'étude d'une équation intégro-différentielle." Metz, 2000. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2000/Aissani.Amel.SMZ0036.pdf.
Full textMounkala, Clément. "Effets des singularités géométriques sur les résultats numériques d'une méthode d'éléments finis de frontière dans un problème plan." Compiègne, 1988. http://www.theses.fr/1988COMPD134.
Full textBooks on the topic "Riccati, Équation de – Solutions numériques"
Chabrowski, Jan. The Dirichlet problem with L²-boundary data for elliptic linear equations. Berlin: Springer-Verlag, 1991.
Find full textV, Zhitarashu N., ed. Parabolic boundary value problems. Basel: Birkhäuser Verlag, 1998.
Find full textNedelec, Jean-Claude. Acoustic and Electromagnetic Equations: Integral Representations For Harmonic Problems. Springer, 2010.
Find full textRoos, Hans-Görg, Martin Stynes, and Lutz Tobiska. Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems (Springer Series in Computational Mathematics). Springer, 1996.
Find full textBowles, John B., and Robert Vichnevetsky. Fourier Analysis of Numerical Approximations of Hyperbolic Equations (Studies in Applied and Numerical Mathematics). 2nd ed. Society for Industrial Mathematics, 1987.
Find full textEidelman, Samuil D., and Nicolae V. Zhitarashu. Parabolic Boundary Value Problems (Operator Theory: Advances and Applications). Birkhauser, 1999.
Find full text