Dissertations / Theses on the topic 'Riccati, Équation de – Solutions numériques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Riccati, Équation de – Solutions numériques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
El-Moallem, Rola. "Extrapolation vectorielle et applications aux méthodes itératives pour résoudre des équations algébriques de Riccati." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10180/document.
Full textIn this thesis, we are interested in the study of polynomial extrapolation methods and their application as convergence accelerators on iterative methods to solve Algebraic Riccati equations arising in transport theory . In such applications, polynomial extrapolation methods succeed to accelerate the convergence of these iterative methods, even when the convergence turns to be extremely slow.The advantage of these methods of extrapolation is that they use a sequence of vectors which is not necessarily convergent, or which converges very slowly to create a new sequence which can admit a quadratic convergence. Furthermore, the development of restarted (or cyclic) methods allows to limit the cost of computations and storage. An interpretation of the critical case where the Jacobian matrix at the required solution is singular and quadratic convergence turns to linear is made. This problem can be overcome by applying a suitable shift technique. The original equation is transformed into an equivalent Riccati equation where the singularity is removed while the matrix coefficients maintain the same structure as in the original equation. The nice feature of this transformation is that the new equation has the same solution as the original one although the new Jacobian matrix at the solution is nonsingular. Numerical experiments and comparisons which confirm the effectiveness of the new approaches are reported
Badra, Mehdi. "Stabilisation par feedback et approximation des équations de Navier-Stokes." Toulouse 3, 2006. http://www.theses.fr/2006TOU30242.
Full textThis thesis deals with some feedback stabilization problems for the Navier-Stokes equations around an unstable stationary solution. The case of a distributed control localized in a part of the geomatrical domain and the case of a boundary control are considered. The control is expressed in function of the velocity field by a linear feedback law. The feedback law is provided by an algebraic Riccati equation which is obtained with the tools of the optimal control theory. The question of approximating such controlled systems is also considered. We first study the approximation of the linearized Navier-Stokes equations (the so-called Oseen equations) for rough boundary and divergence data. General error estimates are given and Galerkin methods are investigated. We also prove a general nonconform approximation theorem for closed-loop systems obtained from the Riccati theory. We apply this theorem to study the approximation of the Oseen closed-loop system
Cébron, Benoît. "Commande de systèmes dynamiques hybrides." Angers, 2000. http://www.theses.fr/2000ANGE0022.
Full textA dynamic system is said to be hybrid (sdh) when discrete and continuous variables interact. The development of specific representation, analysis and control methods is required to take into account the complexity of these systems. A classification of sdhs is proposed according to the types of hybrid phenomena considered: controlled or autonomous model switching, controlled or autonomous state vector jumps. Control problems are then posed and analysed for each class presented. The search for an optimal control is posed as a problem of minimisation of a criterion of deviation between a calculated trajectory and a desired trajectory. A descent method is applied in each case; it uses the expression of the gradient of the criterion. The latter is calculated from the solution of an adjoint system. We show how to calculate this adjoint system by adapting the general principles of the calculation of variations to the cases considered. This is how discontinuities appear on the adjoint state, for which explicit expressions are given. These discontinuities can be found in the calculated control. The minimization of the criterion is first performed without constraints and then with bound constraints on the control and on its derivative, by implementing the uzawa method. The state feedback control problem is addressed for the classes of sdh with controlled and autonomous model switching. This leads to the solution of riccati equations. Each case studied is illustrated by a numerical implementation which allows to judge the efficiency of the proposed method, in terms of accuracy and computation time, and to conclude that it is possible to control sdhs by these methods
Oumri, Mohamed. "Diagnostic des défauts de réseaux électriques filaires par la réflectométrie." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112090/document.
Full textThis thesis focuses on fault diagnosis of wired electric networks using reflectometry. To develop diagnostic algorithms, we studied the direct problem (numerical simulations of electrical networks) and the inverse problem (determination of certain properties of a network from reflectometry measurements). For the direct problem, we developed a method for the computation of reflection coefficients. This method is based on the successive solving for a Riccati differential equation. We also generalized the BLT equation for the nonuniform electric networks and automated the resolution of this method. The thesis has made two new results concerning the inverse problem. The first result concerns the estimation of lengths and loss coefficients of the branches of a star network via an iterative method. The second focuses on the identification, at least partially, of the branches admittance matrices of a electric network modeled by the equation of BLT. The methodologies and formalisms proposed in this thesis are validated either by numerical simulations or by real measurements
Aït-Mokhtar, Sadjia. "Sur les singularités dans le champ complexe des solutions de certaines équations différentielles singulièrement perturbées." La Rochelle, 2003. http://www.theses.fr/2003LAROS107.
Full textMondoloni, Antoine. "Existence d'une solution faible d'une équation d'onde quasi-linéaire avec conditions aux limites." Corte, 2000. http://www.theses.fr/2000CORT3052.
Full textDarbas, Marion. "Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de diffraction d'ondes." Toulouse, INSA, 2004. http://www.theses.fr/2004ISAT0028.
Full textThis thesis deals with fast numerical processes to solve scattering problems of acoustic or electromagnetic waves. The essential used technique consists in coupling the integral equations method with the On-Surface Radiation Conditions (OSRC) method deriving microlocal approximations of the Dirichlet-Neumann operator in the high frequency regime. More particularly, we use OSRC to accelerate the convergence of the iterative methods considered to solve integral equations. We develop two studies : open surfaces and closed surfaces. In the case of open surfaces, OSRC represent some efficient analytic Calderon-type preconditioners. In the case of closed surfaces, OSRC designate some regularizing operators and lead to the construction of second-kind Fredholm integral equations. These equations are well-adapted to an iterative solution. Their construction is based on obtaining an excellent eigenvalues clustering of the associated operators. Two-dimensional and three-dimensional numerical tests confirm the theoritical analysis. They show that good convergence rates of the iterative solvers are attained. The convergence is independent of the mesh refinement and of the wave number
Dujardin, Guillaume. "Étude de schémas de discrétisation en temps de l’équation de Schrödinger." Rennes 1, 2008. ftp://ftp.irisa.fr/techreports/theses/2008/dujardin.pdf.
Full textCette thèse consiste en l'analyse numérique de méthodes de résolution d'équations aux dérivées partielles de type Schrödinger : sur le tore de dimension d, on s'intéresse à la résolution numérique de l'équation de Schrödinger linaire avec potentiel multiplicatif, de l'équation de Schrödinger linéaire inhomogène et de l'équation de Schrödinger non linéaire. Dans une première partie, on étudie des méthodes de splitting en temps, symplectiques, pour l'équation de Schrödinger linéaire avec potentiel multiplicatif. Dans l'asymptotique des petits potentiels, on démontre par une méthode perturbative un théorème de forme normale pour le propagateur de ces méthodes. Ce théorème permet ensuite de démontrer des propriétés de conservation en temps long de la régularité de la solution numérique pour des pas de temps non résonnants. La seconde partie est consacrée à l'analyse numérique de méthodes de Runge-Kutta exponentielles pour l'équation de Schrödinger linéaire inhomogène et pour l'équation de Schrödinger non linéaire. Dans une perspective d'ordre élevé et en temps fini, on donne des conditions suffisantes pour que les méthodes de collocation à s points soient d'ordre s, s+1 et s+2 pour les deux types de problèmes envisagés. On illustre, quantifie et explique en outre l'effet des résonnances numériques qui apparaissent lors de la résolution des problèmes linéaires inhomogènes par de telles méthodes
Aïssani, Amel. "Sur la déformation d'un fil élastique et sur l'étude d'une équation intégro-différentielle." Metz, 2000. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2000/Aissani.Amel.SMZ0036.pdf.
Full textMounkala, Clément. "Effets des singularités géométriques sur les résultats numériques d'une méthode d'éléments finis de frontière dans un problème plan." Compiègne, 1988. http://www.theses.fr/1988COMPD134.
Full textMoutoussamy, Isabelle. "Symétries et singularités de solutions d'équations paraboliques semi-linéaires." Tours, 1987. http://www.theses.fr/1987TOUR4009.
Full textDarrigrand, Éric. "Couplage méthodes multipôles-discrétisation microlocale pour les équations intégrales de l'électromagnétisme." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12552.
Full textDjenno, Ngomanda Malcom. "Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2007. http://tel.archives-ouvertes.fr/tel-00718572.
Full textBrahmi, Ahcène. "Une méthode d'éléments finis mixtes duale raffinée pour le couplage des équations de Navier-Stokes et de la chaleur." Doctoral thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19023.
Full textCrouseilles, Nicolas. "Modèles cinétiques et hybrides fluide-cinétique pour les gaz et les plasmas hors équilibre." Toulouse, INSA, 2004. http://www.theses.fr/2004ISAT0020.
Full textIn this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used : the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts : the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker- Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping
Naceur, Nahed. "Une méthode de décomposition de domaine pour la résolution numérique d’une équation non-linéaire." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0149.
Full textThe subject of this thesis is to present a theoretical analysis and a numerical resolution of a type of quasi-linear elliptic and parabolic equations. These equations present an important role to model phenomena in population dynamics and chemical reactions. We started this thesis with the theoretical study of a quasi-linear elliptical equation for which we demonstrated the existence of a weak non-negative solution under more general hypotheses than those considered in previous works. Then we inspired a new method based on Newton’s method and the domain decomposition method without and with overlapping. Then, we recalled some theoretical aspects concerning the existence, the uniqueness and the regularity of the solution of a parabolic equation called Fujita equation. We also recalled results about the existence of the global solution and the maximum time of existence in the case of blow-up. In order to calculate a numerical approximation of the solution of this type of equation, we introduced a finite element discretization in the space variable and a Crank-Nicholson scheme for the time discretization. To solve the discrete nonlinear problem we implemented a Newton’s method coupled with a domain decomposition method. We have shown that the method is well posed. Another type of parabolic equation known as the Chipot-Weissler equation has also been treated. First, we recalled theoretical results concerning this equation. Then, based on the numerical methods studied previously, a numerical approximation of the solution of this equation was calculated. In the last section of each chapter of this thesis we presented numerical simulations illustrating the performance of the algorithms studied and its compatibility with the theory
Duval, Jean-Baptiste. "Détection numérique de petites imperfections de conductivité en 2D et 3D par une méthode dynamique basée sur l'équation des ondes et le contrôle géométrique." Phd thesis, Université de Picardie Jules Verne, 2009. http://tel.archives-ouvertes.fr/tel-00429530.
Full textTitaud, Olivier. "Analyse et résolution numérique de l'équation de transfert : application au problème des atmosphères stellaires." Phd thesis, Université Jean Monnet - Saint-Etienne, 2001. http://tel.archives-ouvertes.fr/tel-00001333.
Full textSoualem, Nadir. "Estimateurs d'erreur à posteriori pour des problèmes dynamiques." Valenciennes, 2007. https://ged.uphf.fr/nuxeo/site/esupversions/82485382-36d7-4017-9906-07d429bbba57.
Full textIn a first part, we introduce an a posteriori estimator for a nonconforming finite element approximation of the heat equation in R^d, d=2,3, using Backward Euler's scheme. For this discretization, we derive a residual indicator based on the jumps of the normal and tangential derivatives of the nonconforming approximation and a time residual based on the jump of broken gradients at each time step. Lower and upper bounds form the main results. We confirm the efficiency and reliability of these estimators. In a second part, we present an a posteriori estimator for the time dependent Stokes problem in R^d, d=2 or 3 Our analysis covers nonconforming finite element approximation (Crouzeix-Raviart's element). We derive an indicator which uses a spatial and time residual. Numerical experiments confirm the theoretical predictions and show the usefulness of these estimators on adaptive mesh refinement
Cesco, Nathalie. "Étude et modélisation de l'écoulement diphasique à l'intérieur des propulseurs à poudre." Toulouse, ENSAE, 1997. http://www.theses.fr/1997ESAE0019.
Full textMazumdar, Saikat. "Équations polyharmoniques sur les variétés et études asymptotiques dans une équation de Hardy-Sobolev." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0047/document.
Full textThis memoir can be divided into two parts: Part 1: In this part we obtain some existence results for conformally invariant polyharmonic boundary value problems on a compact Riemannian manifold with or without boundary. In particular we show that the best constant of the Sobolev embedding on manifolds is same as the euclidean one, and as a consequence prove the existence of minimum energy solutions when the energy functionnal goes below a quantified threshold. Next we show the existence of high energy solution using the topological method of Coron. We generalize the decomposition of Palais Smale sequences as a sum of bubble on manifolds with or without boundary, a result in the spirit of Struwe's celebrated 1984 result and also an extension of PL Lions concentration compactness result on manifolds. Part2: In this part we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev equation with critical growth and vanishing boundary singularity. We assume that our equation does not admit minimising solutions, and study the asymptotic behaviour of a sequence of solution to the perturbed equation. Here the perturbation is the singularity at the origin. First we obtain optimal pointwise controlon the sequence and then obtain more precise informations on the localization of the blow-up point using the Pohozaev identity
Deniau, Hugues. "Calcul d'écoulements supersoniques pour résolution des équations de Navier-Stokes parabolisées : modélisation de la turbulence, traitement des poches subsoniques." Toulouse, ENSAE, 1996. http://www.theses.fr/1996ESAE0001.
Full textLi, Hao. "On Wave Based Computational Approaches For Heterogeneous Media." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN001/document.
Full textThis thesis develops numerical approaches to solve mid-frequency heterogeneous Helmholtz problem. When the square of wave number varies linearly in the media, one considers an extended Variational Theory of Complex Rays(VTCR) with shape functions namely Airy wave functions, which satisfy the governing equation. Then a general way to handle heterogeneous media by the Weak Trefftz Discontinuous Galerkin (WTDG) is proposed. There is no a priori restriction for the wave number. One locally develops general approximated solution of the governing equation, the gradient of the wave number being the small parameter. In this way, zero order and first order approximations are defined, namely Zero Order WTDG and First Order WTDG. Their shape functions only satisfy the local governing equation in average sense.Theoretical demonstration and academic examples of approaches are addressed. Then the extended VTCR and the WTDG are both applied to solve a harbor agitation problem. Finally, a FEM/WAVE WTDG is further developed to achieve a mix use of the Finite Element method(FEM) approximation and the wave approximation in the same subdomains, at the same time for frequency bandwidth including LF and MF
Zhou, Shuang. "Studies on summability of formal solution to a cauchy problem and on integral functions of Mordell’s type." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10058/document.
Full textIn this thesis, we consider the heat equation with the singular initial condition u(0,z)=1/(1-exp(z)), where z is a complex variable. The aim is to establish relations among three sums of a divergent formal solution to this Cauchy problem: its Borel-sum and two q-Borel-sums obtained by means of heat kernel and theta function respectively. This Stokes analysis allows us to give a generalization to a classical result of Mordell related to the class numbers of the binary positive-definite quadratic forms
Dainese, Marie-Pierre. "Simulation d'écoulements de fluide compressible en géométrie complexe : contribution à l'étude des schémas de discrétisation et d'algorithmes semi-implicites." Toulouse, ENSAE, 1994. http://www.theses.fr/1994ESAE0016.
Full textFilbet, Francis. "Contribution à l'analyse et la simulation numérique de l'équation de Vlasov." Nancy 1, 2001. http://docnum.univ-lorraine.fr/public/SCD_T_2001_0068_FILBET.pdf.
Full textStingo, Annalaura. "Problèmes d’existence globale pour les équations d’évolution non-linéaires critiques à données petites et analyse semi-classique." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD093.
Full textIn this thesis we study the problem of global existence of solutions to critical quasi-linear Klein-Gordon equations – or to critical quasi-linear coupled wave-Klein-Gordon systems – when initial data are small, smooth, decaying at infinity, in space dimension one or two. We first study this problem for Klein-Gordon equations with cubic non-linearities in space dimension one. It is known that, under a suitable structure condition on the non-linearity, the global well-posedness of the solution is ensured when initial data are small and compactly supported. We prove that this result holds true even when initial data are not localized in space but only mildly decaying at infinity, by combining the Klainerman vector fields’ method with a semi-classical micro-local analysis of the solution. The second and main contribution to the thesis concerns the study of the global existence of solutions to a quadratic quasilinear wave-Klein-Gordon system in space dimension two, again when initial data are small smooth and mildly decaying at infinity. We consider the case of a model non-linearity, expressed in terms of "nullforms". Our aim is to obtain some energy estimates on the solution when some Klainerman vector fieldsare acting on it, and sharp uniform estimates. The former ones are recovered making systematically use of normal forms’ arguments for quasi-linear equations, in their para-differential version. We derive the latter ones by deducing a system of ordinary differential equations from the starting partial differential system, this strategy maying leading us in the future to treat the case of the most general non-linearities
Laurens, Sophie. "Approximation de haute précision des problèmes de diffraction." Phd thesis, Université Paul Sabatier - Toulouse III, 2010. http://tel.archives-ouvertes.fr/tel-00475286.
Full textCourtès, Clémentine. "Analyse numérique de systèmes hyperboliques-dispersifs." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS467/document.
Full textThe aim of this thesis is to study some hyperbolic-dispersive partial differential equations. A significant part is devoted to the numerical analysis and more precisely to the convergence of some finite difference schemes for the Korteweg-de Vries equation and abcd systems of Boussinesq. The numerical study follows the classical steps of consistency and stability. The main idea is to transpose at the discrete level the weak-strong stability property for hyperbolic conservation laws. We determine the convergence rate and we quantify it according to the Sobolev regularity of the initial datum. If necessary, we regularize the initial datum for the consistency estimates to be always valid. An optimization step is thus necessary between this regularization and the convergence rate of the scheme. A second part is devoted to the existence of traveling waves for the Korteweg-de Vries-Kuramoto-Sivashinsky equation. By classical methods of dynamical systems : extended systems, Lyapunov function, Melnikov integral, for instance, we prove the existence of oscillating small amplitude traveling waves
Barkatou, My Abdelfattah. "Contribution à l'étude des équations différentielles et aux différences dans le champ complexe." Phd thesis, Grenoble INPG, 1989. http://tel.archives-ouvertes.fr/tel-00332857.
Full textAldbaissy, Rim. "Discrétisation du problème de couplage instationnaire des équations de Navier-Stokes avec l'équation de la chaleur." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS013.
Full textThe analytical solutions of the majority of partial differential equations are difficult to calculate, hence, numerical methods are employed. This work is divided into two parts. First, we study the time dependent Navier-Stokes equations coupled with the heat equation with nonlinear viscosity depending on the temperature known as the Boussinesq (buoyancy) model . Then, numerical experiments are presented to confirm the theoretical accuracy of the discretization using the Freefem++ software. In the first part, we propose first order numerical schemes based on the finite element method for the space discretization and the semi-implicit Euler method for the time discretization. In order to gain time and order of convergence, we study a second order scheme in time and space by using respectively the second order BDF method "Backward Differentiation Formula" and the finite element method. An optimal a priori error estimate is then derived for each numerical scheme. Finally, numerical experiments are presented to confirm the theoretical results. The second part is dedicated to the modeling of the thermal instability that appears from time to time while printing using a 3D printer. Our purpose is to build a reliable scheme for the 3D simulation. For this reason, we propose a trivial parallel algorithm based on the domain decomposition method. The numerical results show that this method is not efficient in terms of scalability. Therefore, it is important to use a one-level preconditioning method "ORAS". When using a large number of subdomains, the numerical test shows a slow convergence. In addition, we noticed that the iteration number depends on the physical model. A coarse space correction is required to obtain a better convergence and to be able to model in three dimensions
Helluy, Philippe. "Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus." Phd thesis, Ecole nationale superieure de l'aeronautique et de l'espace, 1994. http://tel.archives-ouvertes.fr/tel-00657828.
Full textMildner, Marcus. "Stabilité de l'équation d'advection-diffusion et stabilité de l'équation d'advection pour la solution du problème approché, obtenue par la méthode upwind d'éléments-finis et de volumes-finis avec des éléments de Crouzeix-Raviart." Phd thesis, Université du Littoral Côte d'Opale, 2013. http://tel.archives-ouvertes.fr/tel-00839524.
Full textJaber, Hassan. "Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0062/document.
Full textIn this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
Peynaud, Emilie. "Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique : analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques." Thesis, Toulouse, INSA, 2013. http://www.theses.fr/2013ISAT0019/document.
Full textThis thesis deals with the numerical simulation of time harmonic acoustic propagation in an arbitrary mean flow in an unbounded domain. Our approach is based on an equation equivalent to the linearized Euler equations called the Galbrun equation. It is derived from a mixed Eulerian-Lagrangian formulation and results in a single equation whose only unknown is the perturbation of the Lagrangian displacement. A direct solution using finite elements is unstable but this difficulty can be overcome by using an augmented equation which is constructed by adding a new unknown, the vorticity, defined as the curl of the displacement. This leads to a set of equations coupling a wave like equation with a time harmonic transport equation which allows the use of perfectly matched layers (PML) at artificial boundaries to bound the computational domain. The first part of the thesis is a study of the time harmonic transport equation and its approximation by means of a discontinuous Galerkin scheme, the difficulties coming from the oscillating behaviour of its solutions. Once these difficulties have been overcome, it is possible to deal with the resolution of the acoustic propagation problem. The approximation method is based on a mixed continuous-Galerkin and discontinuous-Galerkin finite element scheme. The well-posedness of both the continuous and discrete problems is established and the convergence of the approximation under some mean flow conditions is proved. Finally a numerical implementation is achieved and numerical results are given which confirm the validity of the method and also show that it is relevant in complex cases, even for unstable flows
Gradinaru, Mihai. "Applications du calcul stochastique à l'étude de certains processus." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011826.
Full textentre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de
certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion,
mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou
d'équations aux dérivées partielles stochastiques.
La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes
suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions,
grandes déviations pour un processus obtenu par perturbation brownienne d'un système
dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique
pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire,
étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique,
étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à
frontière absorbante et enfin, estimation non-paramétrique et construction d'un
test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une
équation différentielle stochastique.
Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique.
On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles
et de l'analyse.
Zorni, Chiara. "Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : de l’expérience au modèle d’interaction." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112031/document.
Full textThe aim of this work is the eddy-current testing (ECT) of ferromagnetic materials within magnetic sensors, such as Giant Magneto-Resistances (GMR). Two complementary aspects have been studied. Experimental measurements have been carried out in order to quantify and minimize the noise coming from the materials structure and residual magnetization. On the other hand, a model has been developed in order to be able to simulate the electromagnetic interactions between a ferromagnetic specimen and the EC probe. The GMR sensors are characterized by high sensitivity at low frequency, large dynamic range and are relatively easy to implement. The studies carried out during this thesis allowed us to identify and analyse the “ghost signals” due to magnetic materials. In order to minimize the noise coming from the materials structure, a linear multi-frequencies combination of experimental signals has been employed successfully and the detection of buried flaws has been improved. The residual magnetization in ferromagnetic materials has been experimentally analyzed and an electronic system has been realized to fix the polarisation point of the sensor in the linear response zone of the GMR. Thus, disturbances caused by residual magnetization are successfully reduced. Beside, in order to develop simulation tools aiming at improving the understanding of experimental signals and optimizing the performances of ECT procedures, a model has been developed to simulate the ECT of planar, stratified and ferromagnetic materials affected with multiple flaws. CEA developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. Following a previous work carried out at the laboratory and already integrated in the simulation platform CIVA, developed at CEA-LIST, the new model extends CIVA functionalities to the ferromagnetic planar case. Simulation results are obtained through the application of the Volume Integral Method (VIM) which involves the dyadic Green’s functions. Two coupled integral equations have to be solved and the numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments (MoM). Finally, the probe response is calculated by application of the Lorentz reciprocity theorem. A collaboration with the University of Cassino (Italy) and Laboratoire de Génie Electrique de Paris (France) allowed us to compare the three models on experimental and numerical results from literature. Results showed a good agreement between the three models and the model stability has been analyzed