To see the other types of publications on this topic, follow the link: Ridge regression (Statistics).

Journal articles on the topic 'Ridge regression (Statistics)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ridge regression (Statistics).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Steece, Bert M. "Regressor space outliers in ridge regression." Communications in Statistics - Theory and Methods 15, no. 12 (January 1986): 3599–605. http://dx.doi.org/10.1080/03610928608829333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Boer, Paul M. C., and Christian M. Hafner. "Ridge regression revisited." Statistica Neerlandica 59, no. 4 (October 13, 2005): 498–505. http://dx.doi.org/10.1111/j.1467-9574.2005.00304.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sundberg, Rolf. "Continuum Regression and Ridge Regression." Journal of the Royal Statistical Society: Series B (Methodological) 55, no. 3 (July 1993): 653–59. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01930.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Özkale, M. Revan, Stanley Lemeshow, and Rodney Sturdivant. "Logistic regression diagnostics in ridge regression." Computational Statistics 33, no. 2 (July 29, 2017): 563–93. http://dx.doi.org/10.1007/s00180-017-0755-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khalaf, G., Kristofer Månsson, and Ghazi Shukur. "Modified Ridge Regression Estimators." Communications in Statistics - Theory and Methods 42, no. 8 (April 15, 2013): 1476–87. http://dx.doi.org/10.1080/03610926.2011.593285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McDonald, Gary C. "Tracing ridge regression coefficients." Wiley Interdisciplinary Reviews: Computational Statistics 2, no. 6 (September 29, 2010): 695–703. http://dx.doi.org/10.1002/wics.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Draper, Norman R., and Agnes M. Herzberg. "A Ridge-Regression Sidelight." American Statistician 41, no. 4 (November 1987): 282. http://dx.doi.org/10.2307/2684750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Xu-Qing, and Feng Gao. "Linearized Ridge Regression Estimator in Linear Regression." Communications in Statistics - Theory and Methods 40, no. 12 (April 8, 2011): 2182–92. http://dx.doi.org/10.1080/03610921003746693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Toker, Selma, Gülesen Üstündağ Şiray, and Selahattin Kaçıranlar. "Inequality constrained ridge regression estimator." Statistics & Probability Letters 83, no. 10 (October 2013): 2391–98. http://dx.doi.org/10.1016/j.spl.2013.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jensen, D. R., and D. E. Ramirez. "Concentration reversals in ridge regression." Statistics & Probability Letters 79, no. 21 (November 2009): 2237–41. http://dx.doi.org/10.1016/j.spl.2009.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jensen, Donald R., and Donald E. Ramirez. "Anomalies in Ridge Regression: Rejoinder." International Statistical Review 78, no. 2 (June 18, 2010): 215–17. http://dx.doi.org/10.1111/j.1751-5823.2010.00116.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chawla, J. S. "A note on ridge regression." Statistics & Probability Letters 9, no. 4 (April 1990): 343–45. http://dx.doi.org/10.1016/0167-7152(90)90144-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Guerard, John B. "Composite forecasting using ridge regression." Communications in Statistics - Theory and Methods 16, no. 4 (January 1987): 937–52. http://dx.doi.org/10.1080/03610928708829414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zinodiny, S. "Bayes minimax ridge regression estimators." Communications in Statistics - Theory and Methods 47, no. 22 (March 7, 2018): 5519–33. http://dx.doi.org/10.1080/03610926.2017.1397167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Türkan, Semra, and Öniz Toktamış. "Detection of influential observations in ridge regression and modified ridge regression." Model Assisted Statistics and Applications 7, no. 2 (April 9, 2012): 91–97. http://dx.doi.org/10.3233/mas-2011-0215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zahid, Faisal M., and Shahla Ramzan. "Ordinal ridge regression with categorical predictors." Journal of Applied Statistics 39, no. 1 (January 2012): 161–71. http://dx.doi.org/10.1080/02664763.2011.578622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Varathan, Nagarajah. "An improved ridge type estimator for logistic regression." Statistics in Transition New Series 23, no. 3 (September 1, 2022): 113–26. http://dx.doi.org/10.2478/stattrans-2022-0033.

Full text
Abstract:
Abstract In this paper, an improved ridge type estimator is introduced to overcome the effect of multi-collinearity in logistic regression. The proposed estimator is called a modified almost unbiased ridge logistic estimator. It is obtained by combining the ridge estimator and the almost unbiased ridge estimator. In order to asses the superiority of the proposed estimator over the existing estimators, theoretical comparisons based on the mean square error and the scalar mean square error criterion are presented. A Monte Carlo simulation study is carried out to compare the performance of the proposed estimator with the existing ones. Finally, a real data example is provided to support the findings.
APA, Harvard, Vancouver, ISO, and other styles
18

Flack, Virginia F. "Predictability measures for ridge regression models." Communications in Statistics - Theory and Methods 18, no. 2 (January 1989): 755–66. http://dx.doi.org/10.1080/03610928908829932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Månsson, Kristofer, and Ghazi Shukur. "On Ridge Parameters in Logistic Regression." Communications in Statistics - Theory and Methods 40, no. 18 (September 15, 2011): 3366–81. http://dx.doi.org/10.1080/03610926.2010.500111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Arashi, M., M. Janfada, and M. Norouzirad. "Singular Ridge Regression With Stochastic Constraints." Communications in Statistics - Theory and Methods 44, no. 6 (May 16, 2013): 1281–92. http://dx.doi.org/10.1080/03610926.2012.763097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Park, Mingue, and Min Yang. "Ridge Regression Estimation for Survey Samples." Communications in Statistics - Theory and Methods 37, no. 4 (January 30, 2008): 532–43. http://dx.doi.org/10.1080/03610920701669694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kaciranlar, Seiahatim, Saduiiah Sakallioglu, and Fikri Akdeniz. "Mean squared error comparisons of the modified ridge regression estimator and iiie restricted ridge regression estimator." Communications in Statistics - Theory and Methods 27, no. 1 (January 1998): 131–38. http://dx.doi.org/10.1080/03610929808832655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Saleh, A. K. Md E., and B. M. Golam Kibria. "Improved ridge regression estimators for the logistic regression model." Computational Statistics 28, no. 6 (April 19, 2013): 2519–58. http://dx.doi.org/10.1007/s00180-013-0417-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

HAITOVSKY, YOEL. "On multivariate ridge regression." Biometrika 74, no. 3 (1987): 563–70. http://dx.doi.org/10.1093/biomet/74.3.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, A. H., and M. J. Silvapulle. "Ridge estimation in logistic regression." Communications in Statistics - Simulation and Computation 17, no. 4 (January 1988): 1231–57. http://dx.doi.org/10.1080/03610918808812723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kizilaslan, Busenur, Erol Egrioglu, and Atif Ahmet Evren. "Intuitionistic fuzzy ridge regression functions." Communications in Statistics - Simulation and Computation 49, no. 3 (June 13, 2019): 699–708. http://dx.doi.org/10.1080/03610918.2019.1626887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Özkale, M. Revan. "A stochastic restricted ridge regression estimator." Journal of Multivariate Analysis 100, no. 8 (September 2009): 1706–16. http://dx.doi.org/10.1016/j.jmva.2009.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Qona’ah, Niswatul, Sutikno, Kiki Ferawati, and Muhammad Bayu Nirwana. "Temperature Forecast Using Ridge Regression as Model Output Statistics." Proceeding International Conference on Science and Engineering 3 (April 30, 2020): 383–88. http://dx.doi.org/10.14421/icse.v3.533.

Full text
Abstract:
Over the past few years, BMKG (Meteorological, Climatological and Geophysical Agency) in Indonesia has used numerical weather forecasting techniques, namely Numerical Weather Prediction (NWP). However, the NWP forecast still has a high bias because it is only measured on a global scale and unable to capture the dynamics of atmosphere (Wilks, 2007). Hence, this study implements Ridge Regression as Model Output Statistics (MOS) for temperature forecast. This study uses the maximum temperature (Tmax) and minimum temperature (Tmin) observation at 4 stations in Indonesia as the response variables and NWP as the predictor variable. The results show that the performance of the model based on Root Mean Square Error of Prediction (RMSEP) is considered to be good and intermediate. The RMSEP for Tmax in all stations is intermediate (0.9-1.2), Tmin in all stations is good (0.5-0.8). The prediction result from Ridge Regression is more accurate than the NWP model and able to correct up to 90.49% of the biased NWP for Tmax forecasting.
APA, Harvard, Vancouver, ISO, and other styles
29

Chawla, J. S. "The existence theorem in general ridge regression." Statistics & Probability Letters 7, no. 2 (September 1988): 135–37. http://dx.doi.org/10.1016/0167-7152(88)90039-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jensen, Donald R., and Donald E. Ramirez. "Anomalies in the Foundations of Ridge Regression." International Statistical Review 76, no. 1 (April 2008): 89–105. http://dx.doi.org/10.1111/j.1751-5823.2007.00041.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hoerl, Roger W. "Ridge Regression: A Historical Context." Technometrics 62, no. 4 (October 1, 2020): 420–25. http://dx.doi.org/10.1080/00401706.2020.1742207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lee, Tze-San, and Don B. Campbell. "Selecting the optimum k in ridge regression." Communications in Statistics - Theory and Methods 14, no. 7 (January 1985): 1589–604. http://dx.doi.org/10.1080/03610928508828997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Füle, Erika. "On ecological regression and ridge estimation." Communications in Statistics - Simulation and Computation 24, no. 2 (January 1995): 385–98. http://dx.doi.org/10.1080/03610919508813248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Arashi, M., S. M. M. Tabatabaey, and M. Hassanzadeh Bashtian. "Shrinkage Ridge Estimators in Linear Regression." Communications in Statistics - Simulation and Computation 43, no. 4 (October 11, 2013): 871–904. http://dx.doi.org/10.1080/03610918.2012.718838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Saleh, A. K. Md E., and B. M. Golam Kibria. "On some ridge regression estimators: a nonparametric approach." Journal of Nonparametric Statistics 23, no. 3 (September 2011): 819–51. http://dx.doi.org/10.1080/10485252.2011.567335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gana, Rajaram. "Ridge regression estimation of the linear probability model." Journal of Applied Statistics 22, no. 4 (January 1995): 537–39. http://dx.doi.org/10.1080/757584790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Asar, Yasin, and Kadriye Kılınç. "A jackknifed ridge estimator in probit regression model." Statistics 54, no. 4 (June 1, 2020): 667–85. http://dx.doi.org/10.1080/02331888.2020.1775597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hadzivukovic, S., E. Nikolic-Djoric, and K. Cobanovic. "The choice of perturbation factor in ridge regression." Journal of Applied Statistics 19, no. 2 (January 1992): 223–30. http://dx.doi.org/10.1080/02664769200000018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Jahufer, Aboobacker, and Chen Jianbao. "Assessing global influential observations in modified ridge regression." Statistics & Probability Letters 79, no. 4 (February 2009): 513–18. http://dx.doi.org/10.1016/j.spl.2008.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hoerl, Arthur E., Robert W. Kennard, and Roger W. Hoerl. "Practical Use of Ridge Regression: A Challenge Met." Applied Statistics 34, no. 2 (1985): 114. http://dx.doi.org/10.2307/2347363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chaturvedi, Ancop. "Ridge regression estimators in the linear regression models with non-spherical errors." Communications in Statistics - Theory and Methods 22, no. 8 (January 1993): 2275–84. http://dx.doi.org/10.1080/03610929308831147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Segerstedt, Bo. "On ordinary ridge regression in generalized linear models." Communications in Statistics - Theory and Methods 21, no. 8 (January 1992): 2227–46. http://dx.doi.org/10.1080/03610929208830909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ullah, M. A., G. R. Pasha, and M. Aslam. "Local Influence Diagnostics in the Modified Ridge Regression." Communications in Statistics - Theory and Methods 42, no. 10 (May 15, 2013): 1851–69. http://dx.doi.org/10.1080/03610926.2011.597920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Batah, Feras Sh M., M. Revan Özkale, and S. D. Gore. "Combining Unbiased Ridge and Principal Component Regression Estimators." Communications in Statistics - Theory and Methods 38, no. 13 (June 16, 2009): 2201–9. http://dx.doi.org/10.1080/03610920802503396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Alheety, M. I., and T. V. Ramanathan. "Confidence Interval for Shrinkage Parameters in Ridge Regression." Communications in Statistics - Theory and Methods 38, no. 19 (September 16, 2009): 3489–97. http://dx.doi.org/10.1080/03610920802585856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kubokawa, Tatsuya, and Muni S. Srivastava. "Improved Empirical Bayes Ridge Regression Estimators Under Multicollinearity." Communications in Statistics - Theory and Methods 33, no. 8 (December 31, 2004): 1943–73. http://dx.doi.org/10.1081/sta-120037452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vinod, H. D. "What's the big idea? Ridge regression and regularisation." Significance 17, no. 6 (December 2020): 41. http://dx.doi.org/10.1111/1740-9713.01472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kaçıranlar, Selahattin, Sadullah Sakallıoğlu, M. Revan Özkale, and Hüseyin Güler. "More on the restricted ridge regression estimation." Journal of Statistical Computation and Simulation 81, no. 11 (November 2011): 1433–48. http://dx.doi.org/10.1080/00949655.2010.491480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Özbay, Nimet, Selahattin Kaçıranlar, and Issam Dawoud. "The feasible generalized restricted ridge regression estimator." Journal of Statistical Computation and Simulation 87, no. 4 (August 29, 2016): 753–65. http://dx.doi.org/10.1080/00949655.2016.1224880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Amin, Muhammad, Muhammad Amanullah, Muhammad Aslam, and Muhammad Qasim. "Influence diagnostics in gamma ridge regression model." Journal of Statistical Computation and Simulation 89, no. 3 (December 17, 2018): 536–56. http://dx.doi.org/10.1080/00949655.2018.1558226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography