Academic literature on the topic 'Rieman's Zeta Function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rieman's Zeta Function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rieman's Zeta Function"
Garunkštis, Ramūnas, and Joern Steuding. "QUESTIONS AROUND THE NONTRIVIAL ZEROS OF THE RIEMANN ZETA-FUNCTION. COMPUTATIONS AND CLASSIFICATIONS." Mathematical Modelling and Analysis 16, no. 1 (April 8, 2011): 72–81. http://dx.doi.org/10.3846/13926292.2011.560616.
Full textRODGERS, BRAD. "A CENTRAL LIMIT THEOREM FOR THE ZEROES OF THE ZETA FUNCTION." International Journal of Number Theory 10, no. 02 (February 20, 2014): 483–511. http://dx.doi.org/10.1142/s1793042113501054.
Full textTSUMURA, HIROFUMI. "On functional relations between the Mordell–Tornheim double zeta functions and the Riemann zeta function." Mathematical Proceedings of the Cambridge Philosophical Society 142, no. 3 (May 2007): 395–405. http://dx.doi.org/10.1017/s0305004107000059.
Full textBump, Daniel, and Eugene K. S. Ng. "On Riemann's zeta function." Mathematische Zeitschrift 192, no. 2 (June 1986): 195–204. http://dx.doi.org/10.1007/bf01179422.
Full textLaurinčikas, Antanas, and Renata Macaitienė˙. "Joint universality of the Riemann zeta-function and Lerch zeta-functions." Nonlinear Analysis: Modelling and Control 18, no. 3 (July 25, 2013): 314–26. http://dx.doi.org/10.15388/na.18.3.14012.
Full textMoser, Jan. "On the distribution of multiplicities of zeros of Riemann zeta function." Czechoslovak Mathematical Journal 44, no. 3 (1994): 385–404. http://dx.doi.org/10.21136/cmj.1994.128478.
Full textAcedo, Luis. "On an Exact Relation between ζ″(2) and the Meijer G -Functions." Mathematics 7, no. 4 (April 24, 2019): 371. http://dx.doi.org/10.3390/math7040371.
Full textGelbart, Stephen S., and Stephen D. Miller. "Riemann's zeta function and beyond." Bulletin of the American Mathematical Society 41, no. 01 (October 30, 2003): 59–113. http://dx.doi.org/10.1090/s0273-0979-03-00995-9.
Full textAREF'EVA, I. YA, and I. V. VOLOVICH. "QUANTIZATION OF THE RIEMANN ZETA-FUNCTION AND COSMOLOGY." International Journal of Geometric Methods in Modern Physics 04, no. 05 (August 2007): 881–95. http://dx.doi.org/10.1142/s021988780700234x.
Full textNoda, Takumi. "Some generating functions of the Riemann zeta function." Banach Center Publications 118 (2019): 107–11. http://dx.doi.org/10.4064/bc118-6.
Full textDissertations / Theses on the topic "Rieman's Zeta Function"
Dauguet, Simon. "Généralisations du critère d’indépendance linéaire de Nesterenko." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112085/document.
Full textThis Ph.D. thesis lies in the path opened by Apéry who proved the irrationality of ζ(3) andalready followed by Ball-Rivoal who proved that there are infinitely many odd integers at which Riemann zeta function takes irrational values. A fundamental tool in the proof of Ball-Rivoal is Nesterenko’s linear independence criterion. This criterion has been generalized by Fischler and Zudilin to use common divisors of the coefficients of linear forms, under some restrictive assumptions. Then Fischler gave another generalization for simultaneous approximations (instead of small Z-linear combinations).In this Ph.D. thesis, we improve this last result by greatly weakening the assumption on thedivisors. We prove also an analogous linear independence criterion in the spirit of Siegel. Inanother part joint with Zudilin, we construct simultaneous linear approximations to ζ(2) and ζ(3) using hypergeometric identitites. These linear approximations allow one to prove at thesame time the irrationality of ζ(2) and that of ζ(3). Then, using a criterion from the previouspart, we deduce a lower bound on Z-linear combinations of 1, ζ(2) and ζ(3), under somestrong divisibility hypotheses on the coefficients (so that the Q-linear independence of thesethree numbers still remains an open problem)
Kalpokas, Justas. "Discrete moments of the Riemann zeta function and Dirichlet L-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121119_130728-97328.
Full textAnalizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos.
Reyes, Ernesto Oscar. "The Riemann zeta function." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2648.
Full textMerrill, Katherine J. "Ramanujan's Formula for the Riemann Zeta Function Extended to L-Functions." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/MerrillKJ2005.pdf.
Full textJuchmes, Franziska. "Zeta Functions and Riemann Hypothesis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-32363.
Full textŠimėnas, Raivydas. "Riemann'o hipotezės Speiser'io ekvivalentas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20140704_171541-67476.
Full textA. Speiser showed that the Riemann hypothesis is equivalent to the absence of non-trivial zeros of the derivative of the Riemann zeta-function left of the critical line. The quantitative version of this result was obtained by N. Levinson and H. Montgomery. This result (or the quantitative version of this result proved by N. Levinson and H. Montgomery) were generalized for many zeta-functions for which the Riemann hypothesis is expected. Here we generalize the Speiser equivalent for zeta-functions. We also investigate the relationship between the on-trivial zeros of the extended Selberg class functions and of their derivatives in this region. This class contains zeta functions for which Riemann hypothesis is not true. As an example, we study the relationship between the trajectories of zeros of linear combinations of Dirichlet $L$-functions and of their derivatives computationally.
Tsumura, Hirofumi, and Kohji Matsumoto. "On Witten multiple zeta-functions associated with semisimple Lie algebras I." Annales de L'Institut Fourier, 2006. http://hdl.handle.net/2237/20336.
Full textGauthier, Paul M., and Nikolai Tarkhanov. "A covering property of the Riemann zeta-function." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2008/2668/.
Full textSteuding, Jörn. "On simple zeros of the Riemann zeta-function." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95589820X.
Full textSteuding, Rasa, Jörn Steuding, Kohji Matsumoto, Antanas Laurinčikas, and Ramūnas Garunkštis. "Effective uniform approximation by the Riemann zeta-function." Department of Mathematics of the Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/2237/20429.
Full textBooks on the topic "Rieman's Zeta Function"
Montgomery, Hugh, Ashkan Nikeghbali, and Michael Th Rassias, eds. Exploring the Riemann Zeta Function. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59969-4.
Full textThe Riemann zeta-function: The theory of the Riemann zeta-function with applications. New York: Wiley, 1985.
Find full textLectures on the Riemann zeta function. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textMotohashi, Y. Spectral theory of the Riemann zeta-function. Cambridge: Cambridge University Press, 1997.
Find full textLaurinčikas, Antanas. Limit theorems for the Riemann zeta-function. Dordrecht: Kluwer Academic, 1996.
Find full textR, Heath-Brown D., ed. The theory of the Riemann zeta-function. 2nd ed. Oxford [Oxfordshire]: Clarendon Press, 1986.
Find full textLaurinčikas, Antanas. Limit Theorems for the Riemann Zeta-Function. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2091-5.
Full textIvić, A. Lectures on mean values of the Riemann Zeta function. Berlin: Published for the Tata Institute of Fundamental Research [by] Springer-Vlg., 1991.
Find full textGilbert, Samuel W. The Riemann hypothesis and the roots of the Riemann Zeta Function. [Charleston, S.C.]: BookSurge Publishing, 2009.
Find full textIvic, A. Lectures on mean values of the Riemann zeta function. Berlin: Springer-Verlag for theTata Institute of Fundamental Research, 1991.
Find full textBook chapters on the topic "Rieman's Zeta Function"
Rivat, Joël. "Riemann’s Zeta Function." In Lecture Notes in Mathematics, 27–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74908-2_5.
Full textSchweizer, Wolfgang. "Riemann Zeta Function." In Special Functions in Physics with MATLAB, 233–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64232-7_20.
Full textDittrich, Walter. "Riemann’s Zeta Function Regularization." In SpringerBriefs in History of Science and Technology, 39–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61049-4_8.
Full textDittrich, Walter. "Riemann’s Zeta Function Regularization." In SpringerBriefs in History of Science and Technology, 39–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91482-4_8.
Full textBeals, Richard, and Roderick S. C. Wong. "The Riemann zeta function." In Explorations in Complex Functions, 155–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54533-8_11.
Full textTenenbaum, Gérald, and Michel Mendès France. "The Riemann zeta function." In The Student Mathematical Library, 29–49. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/stml/006/02.
Full textWagon, Stan. "The Riemann Zeta Function." In Mathematica® in Action, 539–54. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1454-0_26.
Full textWagon, Stan. "The Riemann Zeta Function." In Mathematica in Action, 505–22. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-75477-2_21.
Full textAgarwal, Ravi P., Kanishka Perera, and Sandra Pinelas. "The Riemann Zeta Function." In An Introduction to Complex Analysis, 303–7. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0195-7_46.
Full textRassias, Michael Th. "The Riemann zeta function." In Problem-Solving and Selected Topics in Number Theory, 83–98. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-0495-9_7.
Full textConference papers on the topic "Rieman's Zeta Function"
Collins, Nick. "Sonification of the Riemann Zeta Function." In ICAD 2019: The 25th International Conference on Auditory Display. Newcastle upon Tyne, United Kingdom: Department of Computer and Information Sciences, Northumbria University, 2019. http://dx.doi.org/10.21785/icad2019.003.
Full textXavier, G. Britto Antony, T. Sathinathan, and D. Arun. "Fractional order Riemann zeta factorial function." In SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5097535.
Full textJoffily, Sérgio. "The Riemann Zeta Function and Vacuum Spectrum." In Fourth International Winter Conference on Mathematical Methods in Physics. Trieste, Italy: Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.013.0026.
Full textSulaiman, W. T., Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Turan Inequalites for the Riemann Zeta Functions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636956.
Full textGuariglia, Emanuel, and Sergei Silvestrov. "A functional equation for the Riemann zeta fractional derivative." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972655.
Full textGuariglia, Emanuel, and Sergei Silvestrov. "A functional equation for the Riemann Zeta fractional derivative." In ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences. Author(s), 2017. http://dx.doi.org/10.1063/1.4972738.
Full textPARIS, R. B. "NEW ASYMPTOTIC FORMULAS FOR THE RIEMANN ZETA FUNCTION ON THE CRITICAL LINE." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792303_0020.
Full textTihanyi, Norbert. "Fast Method for Locating Peak Values of the Riemann Zeta Function on the Critical Line." In 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2014. http://dx.doi.org/10.1109/synasc.2014.20.
Full textQuintana Murillo, Joaqui´n, and Santos Bravo Yuste. "On an Explicit Difference Method for Fractional Diffusion and Diffusion-Wave Equations." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86625.
Full text