Dissertations / Theses on the topic 'Rieman's Zeta Function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Rieman's Zeta Function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dauguet, Simon. "Généralisations du critère d’indépendance linéaire de Nesterenko." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112085/document.
Full textThis Ph.D. thesis lies in the path opened by Apéry who proved the irrationality of ζ(3) andalready followed by Ball-Rivoal who proved that there are infinitely many odd integers at which Riemann zeta function takes irrational values. A fundamental tool in the proof of Ball-Rivoal is Nesterenko’s linear independence criterion. This criterion has been generalized by Fischler and Zudilin to use common divisors of the coefficients of linear forms, under some restrictive assumptions. Then Fischler gave another generalization for simultaneous approximations (instead of small Z-linear combinations).In this Ph.D. thesis, we improve this last result by greatly weakening the assumption on thedivisors. We prove also an analogous linear independence criterion in the spirit of Siegel. Inanother part joint with Zudilin, we construct simultaneous linear approximations to ζ(2) and ζ(3) using hypergeometric identitites. These linear approximations allow one to prove at thesame time the irrationality of ζ(2) and that of ζ(3). Then, using a criterion from the previouspart, we deduce a lower bound on Z-linear combinations of 1, ζ(2) and ζ(3), under somestrong divisibility hypotheses on the coefficients (so that the Q-linear independence of thesethree numbers still remains an open problem)
Kalpokas, Justas. "Discrete moments of the Riemann zeta function and Dirichlet L-functions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121119_130728-97328.
Full textAnalizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos.
Reyes, Ernesto Oscar. "The Riemann zeta function." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2648.
Full textMerrill, Katherine J. "Ramanujan's Formula for the Riemann Zeta Function Extended to L-Functions." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/MerrillKJ2005.pdf.
Full textJuchmes, Franziska. "Zeta Functions and Riemann Hypothesis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-32363.
Full textŠimėnas, Raivydas. "Riemann'o hipotezės Speiser'io ekvivalentas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2012~D_20140704_171541-67476.
Full textA. Speiser showed that the Riemann hypothesis is equivalent to the absence of non-trivial zeros of the derivative of the Riemann zeta-function left of the critical line. The quantitative version of this result was obtained by N. Levinson and H. Montgomery. This result (or the quantitative version of this result proved by N. Levinson and H. Montgomery) were generalized for many zeta-functions for which the Riemann hypothesis is expected. Here we generalize the Speiser equivalent for zeta-functions. We also investigate the relationship between the on-trivial zeros of the extended Selberg class functions and of their derivatives in this region. This class contains zeta functions for which Riemann hypothesis is not true. As an example, we study the relationship between the trajectories of zeros of linear combinations of Dirichlet $L$-functions and of their derivatives computationally.
Tsumura, Hirofumi, and Kohji Matsumoto. "On Witten multiple zeta-functions associated with semisimple Lie algebras I." Annales de L'Institut Fourier, 2006. http://hdl.handle.net/2237/20336.
Full textGauthier, Paul M., and Nikolai Tarkhanov. "A covering property of the Riemann zeta-function." Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2008/2668/.
Full textSteuding, Jörn. "On simple zeros of the Riemann zeta-function." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=95589820X.
Full textSteuding, Rasa, Jörn Steuding, Kohji Matsumoto, Antanas Laurinčikas, and Ramūnas Garunkštis. "Effective uniform approximation by the Riemann zeta-function." Department of Mathematics of the Universitat Autònoma de Barcelona, 2010. http://hdl.handle.net/2237/20429.
Full textMusser, Jason. "Higher Derivatives of the Hurwitz Zeta Function." TopSCHOLAR®, 2011. http://digitalcommons.wku.edu/theses/1093.
Full textMack, Rüdiger [Verfasser]. "Quantum Mechanics meets the Riemann-Zeta Function / Rüdiger Mack." München : Verlag Dr. Hut, 2011. http://d-nb.info/1010446622/34.
Full textTSUMURA, Hirofumi, and Kohji MATSUMOTO. "Functional relations among certain double polylogarithms and their character analogues." Šiauliai University, 2008. http://hdl.handle.net/2237/20444.
Full textMATSUMOTO, KOHJI, and MASANORI KATSURADA. "Explicit Formulas and Asymptotic Expansions for Certain Mean Square of Hurwitz Zeta-Functions: III." Cambridge University Press, 2002. http://hdl.handle.net/2237/10253.
Full textRanorovelonalohotsy, Marie Brilland Yann. "Riemann hypothesis for the zeta function of a function field over a finite field." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85713.
Full textAlvites, José Carlos Valencia. "Hipótese de Riemann e física." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-13042012-084309/.
Full textIn this work, we introduce the Riemann zeta function \'ZETA\'(s), s \'IT BELONGS\' C \\ and present much of what is known to support the Riemann hypothesis. The importance of \'ZETA\'(s) to the Analytic number theory is emphasized and a proof for the Prime Number Theorem is reviewed. In the end, we report on the importance of \'ZETA\'(s) to some relevant physical models and conclude by describing how the Riemann Hypothesis can be accessed by studying these systems
Matsumoto, Kohji. "Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions." Hindustan Book Agency & The Indian National Science Academy, 2000. http://hdl.handle.net/2237/20433.
Full textMirjana, Vidanović. "Sumiranje redova sa specijalnim funkcijama." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2003. https://www.cris.uns.ac.rs/record.jsf?recordId=73367&source=NDLTD&language=en.
Full textThis dissertation deals with the summation of series over special functions. Throughtrigonometric series these series are reduced to series in terms of Riemann zeta andrelated functions. They can be brought in closed form in some cases, i.e. infiniteseries are expressed as finite sums. Closed form formulas make it possible to accelerate the convergence of some series, and have many applications in various scientificfields as well. For example, closed form solutions of the boundary value problem inmathematical physics can be obtained. Summation formulas include particular casesknown from the literature, but because of their general character one can come tonew sums. By means of these formuláis the sums of series over integrals containingtrigonometric or special functions have been found.
Segarra, Elan. "An Exploration of Riemann's Zeta Function and Its Application to the Theory of Prime Distribution." Scholarship @ Claremont, 2006. https://scholarship.claremont.edu/hmc_theses/189.
Full textFernandez, Arran. "Analysis in fractional calculus and asymptotics related to zeta functions." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284390.
Full textLau, Yuk-kam, and 劉旭金. "Some results on the mean square formula for the riemann zeta-function." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31211586.
Full textLau, Yuk-kam. "Some results on the mean square formula for the riemann zeta-function /." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13762394.
Full textAlcántara, Bode Julio. "A conjecture about the non-trivial zeroes of the Riemann zeta function." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/97185.
Full textČernigova, Sondra. "Moment problem for the periodic zeta-function." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114553-36360.
Full textDisertacijos tyrimo objektas yra periodinė dzeta funkcija. Mokslinė problema - šios funkcijos momentų problema. Darbo tikslas - įrodyti asimptotines formules periodinės funkcijos momentams bei kai kuriems objektams, susijusiems su šios funkcijos momentais. Darbo uždaviniai yra šie: 1. Įrodyti Atkinsono tipo formulę su korektišku liekamuoju nariu kritinėje juostoje periodinei dzeta funkcijai su racionaliuoju parametru. 2. Įrodyti Atkinsono tipo formulės periodinei dzeta funkcijai kritinėje tiesėje vidurkio formulę liekamojo nario modulio kvadratui. 3. Įrodyti Atkinsono tipo formulės periodinei dzeta funkcijai kritinėje juostoje vidurkio formulę liekamojo nario modulio kvadratui. 4. Gauti asimptotinę formulę periodinės dzeta funkcijos ketvirtajam momentui.
Henderson, Cory. "Exploring the Riemann Hypothesis." Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1371747196.
Full textFeiler, Cornelia [Verfasser]. "Quantum physics and number theory connected by the Riemann zeta function / Cornelia Feiler." Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2014. http://d-nb.info/1049561953/34.
Full textMATSUMOTO, Kohji. "An introduction to the value-distribution theory of zeta-functions." Šiauliai University, 2006. http://hdl.handle.net/2237/20445.
Full textChrist, Thomas [Verfasser], Jörn [Gutachter] Steuding, and Ramūnas [Gutachter] Garunkštis. "Value-distribution of the Riemann zeta-function and related functions near the critical line / Thomas Christ. Gutachter: Jörn Steuding ; Ramunas Garunkštis." Würzburg : Universität Würzburg, 2013. http://d-nb.info/1102825875/34.
Full textLee, Kai-yuen, and 李啟源. "On the mean square formula for the Riemann zeta-function on the critical line." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44674405.
Full textHughes, Christopher Paul. "On the characteristic polynomial of a random unitary matrix and the Riemann zeta function." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364865.
Full textSouza, Uender Barbosa de. "Sobre somas infnitas e uma forma recursiva para a soma da série Zeta (2p) de Riemann." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/5264.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-02-23T11:50:57Z (GMT) No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-02-23T11:50:57Z (GMT). No. of bitstreams: 2 Dissertação - Uender Barbosa de Souza - 2015.pdf: 1080400 bytes, checksum: b157d208d7fefbd962ec5263785ee984 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-04-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This paper presents methods to calculate some in nite sums and use the Fourier series of function f(x) = x2p with p 2 N to get results on the behavior of Zeta(2p) function Riemann, including their sum and rational multiplicity of 2p.
Neste trabalho apresentamos métodos para o cálculo de algumas somas in nitas e usamos a série de Fourier da função f(x) = x2p com p 2 N para obter resultados sobre o comportamento da função Zeta(2p) de Riemann, tais como sua soma e sua multiplicidade racional por 2p.
Dalpizol, Luiz Gustavo. "O conjunto excepcional do problema de Goldbach." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/180946.
Full textLet E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
Gulas, Michael Allen. "Using Hilbert Space Theory and Quantum Mechanics to Examine the Zeros of The Riemann-Zeta Function." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1594035551136634.
Full textČernigova, Sondra. "Momentų problema periodinei dzeta funkcijai." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141111_114605-33009.
Full textIn the thesis, problems related to the moments of the periodic zeta-function are considered. The aim of the thesis is to obtain asymptotic formulae for some analytic objects related to the periodic zeta-function. The problems are the following: 1. To prove the Atkinson-type formula with a new error term in the critical strip for the periodic zeta-function with rational parameter. 2. To prove a mean square formula for the error term in the Atkinson-type formula on the critical line for the periodic zeta-function. 3. To prove a mean square formula for the error term in the Atkinson-type formula in the critical strip for the periodic zeta-function. 4. To obtain an asymptotic formula for the fourth power moment of the periodic zeta-function.
Wu, Dongsheng. "Eigenvalues of Differential Operators and Nontrivial Zeros of L-functions." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8729.
Full textTamašauskaitė, Ugnė. "Sudėtinės funkcijos universalumas." Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130730_105103-87570.
Full textMendes, Fernando Vasconcelos. "Quantum gate teleportation, universal entanglers and connections with the number theory." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13647.
Full textA presente tese està dividida em trÃs partes: 1) TeleportaÃÃo de portas quÃnticas; 2) Busca numÃrica por entrelaÃadores universais; 3) ConexÃes entre a informaÃÃo quÃntica e a teoria dos nÃmeros. No que diz a teleportaÃÃo de portas quÃnticas, um critÃrio de separabilidade para matrizes normais à usada para encontrar as condiÃÃes analÃticas da preservaÃÃo da separabilidade sob conjugaÃÃo. Tais condiÃÃes analÃticas permitiram encontrar a forma geral de um elemento do grupo de Clifford em $mathbb{C}^{4}$, assim como tambÃm entender o papel da base de mediÃÃo no protocolo de teleportaÃÃo de portas quÃnticas. Considerando a busca por entrelaÃadores universais, o mesmo critÃrio de separabilidade de matrizes normais foi utilizado como funÃÃo de aptidÃo em uma heurÃstica computacional aplicada para encontrar bons candidatos a entrelaÃadores universais nos espaÃos de Hilbert de dimensÃes $mathbb{C}^{3} otimes mathbb{C}^{4}$ e $mathbb{C}^{4} otimes mathbb{C}^{4}$. Por fim, sobre as conexÃes da informaÃÃo quÃntica com a teoria dos nÃmeros, à apresentado um estudo da preparaÃÃo e entrelaÃamento de vÃrios estados quÃnticos de mÃltiplos qubits baseados em sequÃncias de nÃmeros inteiros. Apresenta-se ainda o circuito quÃntico Riemanniano, um circuito quÃntico cujos autovalores sÃo relacionados aos zeros da funÃÃo Zeta de Riemann. A existÃncia deste circuito prova que à sempre possÃvel construir um sistema fÃsico relacionado a uma quantidade finita de zeros.
Coatney, Ryan D. "Mean Square Estimate for Primitive Lattice Points in Convex Planar Domains." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2501.
Full textRemeikaitė, Solveiga. "Ribinė teorema Rymano dzeta funkcijos Melino transformacijai." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110802_165253-48345.
Full textThe main limit theorem is proved using probabilistic methods, the analytical functions of the properties.
Yamagishi, Shuntaro. "Moment Polynomials for the Riemann Zeta Function." Thesis, 2009. http://hdl.handle.net/10012/4218.
Full textChrist, Thomas. "Value-distribution of the Riemann zeta-function and related functions near the critical line." Doctoral thesis, 2013. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-97763.
Full textDie Riemannsche Zetafunktion ist ein zentraler Gegenstand der multiplikativen Zahlentheorie; in ihrer Werteverteilung liegen wichtige arithmetische Eigenschaften der Primzahlen kodiert. Besondere Bedeutung kommt hierbei dem analytischen Verhalten der Zetafunktion auf der sog. kritischen Geraden zu. Wir untersuchen in dieser Arbeit die Werteverteilung der Riemannschen Zetafunktion auf und nahe der kritischen Geraden. Wir fokusieren wir uns dabei u.a. auf folgende Punkte. TEIL I: Ein modifiziertes Universalitätskonzept, a-Stellen nahe der kritischen Geraden und eine Dichtheitsvermutung nach Ramachandra. Die kritische Gerade fungiert als natürliche Grenze für die Voroninsche Universalitätseigenschaft der Riemannschen Zetafunktion. Wir modifizieren Voronins Universalitätskonzept dahingehend, dass wir die vertikalen Translationen aus Voronins Universalitätssatz mit einer zusätzlichen Skalierung versehen. Wir untersuchen, ob durch dieses modifizierte Konzept eine abgeschwächte Universalitätseigenschaft der Riemannschen Zetafunktion um die kritschen Gerade aufrecht erhalten werden kann. Es stellt sich heraus, dass die Gestalt der Funktionen, die sich auf diese Weise durch die Zetafunktion approximieren lassen, stark von der Funktionalgleichung und der Wahl des skalierenden Faktors abhängt. Nach einem Resultat von Levinson liegen fast alle a-Stellen der Riemannschen Zetafunktion in einem trichterförmigen Bereich um die kritische Gerade. Gewisse Normalitätsargumenten sowie das Konzept der 'filling discs' erlauben uns Levinsons Resultat zu ergänzen und a-Stellen in diesem trichterförmigen Bereich aufzuspüren, die sehr nahe an der kritischen Geraden liegen. Man vermutet, dass die Werte der Riemannschen Zetafunktion auf der kritischen Geraden dicht in den komplexen Zahlen liegen. Wir nähern uns dieser Vermutung (die man oft Ramachandra zuschreibt), indem wir die Existenz gewisser Kurven nachweisen, die sich asymptotisch an die kritische Gerade anschmiegen und die Eigenschaft besitzen, dass die Werte der Zetafunktion auf diesen Kurven dicht in den komplexen Zahlen liegen. Viele unserer Ergebnisse in Teil I sind unabhängig von der Eulerproduktdarstellung der Zetafunktion und gelten allgemein für beliebige meromorphe Funktionen, die einer Funktionalgleichung vom Riemann-Typ genügen. TEIL II: Diskrete und kontinuierliche Momente. Die Lindelöf Vermutung trifft eine Aussage über das Wachstumsverhalten der Zetafunktion auf der kritischen Geraden. Nach klassischen Arbeiten von Hardy und Littlewood lässt sie sich mittels Potenzmomente der Zetafunktion rechts von der kritischen Geraden umformulieren. Tanaka konnte kürzlich nachweisen, dass die asymptotischen Formeln, die man für diese Potenzmomente erwartet in einem gewissen maßtheoretischem Sinne Gülitgkeit besitzen: grob gesprochen wird heibei eine Menge mit Banachdichte null vom Integrationsweg der Potenzmomente ausgespart. Wir stellen eine diskrete und eine integrierte Version von Tanakas Resultat zur Verfügung. Zudem verallgemeinern wir Tanakas Ergebnis auf eine große Klasse von Dirichletreihen
"Theory of the generalized modified Bessel function K_{z,w}(x) and 2-adic valuations of integer sequences." Tulane University, 2017.
Find full textModular-type transformation formulas are the identities that are invariant under the transformation α → 1/α, and they can be represented as F (α) = F (β) where α β = 1. We derive a new transformation formula of the form F (α, z, w) = F (β, z, iw) that is a one-variable generalization of the well-known Ramanujan-Guinand identity of the form F (α, z) = F (β, z) and a two-variable generalization of Koshliakov’s formula of the form F (α) = F (β) where α β = 1. The formula is generated by first finding an integral J that is comprised of an invariance function Z and evaluating the integral to give F (α, z, w) mentioned above. The modified Bessel function K z (x) appearing in Ramanujan-Guinand identity is generalized to a new function, denoted as K z,w (x), that yields a pair of functions reciprocal in the Koshliakov kernel, which in turn yields the invariance function Z and hence the integral J and the new formula. The special function K z,w (x), first defined as the inverse Mellin transform of a product of two gamma functions and two confluent hypergeometric functions, is shown to exhibit a rich theory as evidenced by a number of integral and series representations as well as a differential-difference equation. The second topic of the thesis is 2-adic valuations of integer sequences associated with quadratic polynomials of the form x 2 +a. The sequence {n 2 +a : n ∈ Z} contains numbers divisible by any power of 2 if and only if a is of the form 4 m (8l+7). Applying this result to the sequences derived from the sums of four or fewer squares when one or more of the squares are kept constant leads to interesting results, that also points to an inherent connection with the functions r k (n) that count the number of ways to represent n as sums of k integer squares. Another class of sequences studied is the shifted sequences of the polygonal numbers given by the quadratic formula, for which the most common examples are the triangular numbers and the squares.
1
Aashita Kesarwani
Huang, Chun-Yueh, and 黃駿岳. "Riemann Zeta Function Model for Online Data Change Detection." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/89095098996029232892.
Full textPugh, Glendon Ralph. "The Riemann-Siegel formula and large scale computations of the Riemann zeta function." Thesis, 1998. http://hdl.handle.net/2429/9023.
Full textSteuding, Jörn [Verfasser]. "On simple zeros of the Riemann zeta-function / von Jörn Steuding." 1999. http://d-nb.info/95589820X/34.
Full textLiu, Chih Shiuan, and 劉志璿. "The connection between the functions of Riemann zeta and Bernoulli Number." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/17154599310613619902.
Full text國立臺中教育大學
數學教育學系
96
This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$.
若狭, 尊裕, and Takahiro Wakasa. "The explicit estimation for the argument of the Riemann zeta function on the critical line." Thesis, 2014. http://hdl.handle.net/2237/19981.
Full textBunn, Jared Ross. "Nikolski's approach to the theorems of Beurling and Nyman regarding zeros of the Riemann [zeta]-function." 2006. http://etd.utk.edu/2006/BunnJared.pdf.
Full textMenz, Petra Margarete. "An algorithm for computing the riemann zeta function based on an analysis of Backlund’s remainder estimate." Thesis, 1994. http://hdl.handle.net/2429/5448.
Full textOuimet, Frédéric. "Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics." Thèse, 2019. http://hdl.handle.net/1866/22667.
Full text