Academic literature on the topic 'Riemann integral. Integrals, Stieltjes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riemann integral. Integrals, Stieltjes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Riemann integral. Integrals, Stieltjes"

1

Gal, Sorin G. "On a Choquet-Stieltjes type integral on intervals." Mathematica Slovaca 69, no. 4 (2019): 801–14. http://dx.doi.org/10.1515/ms-2017-0269.

Full text
Abstract:
Abstract In this paper we introduce a new concept of Choquet-Stieltjes integral of f with respect to g on intervals, as a limit of Choquet integrals with respect to a capacity μ. For g(t) = t, one reduces to the usual Choquet integral and unlike the old known concept of Choquet-Stieltjes integral, for μ the Lebesgue measure, one reduces to the usual Riemann-Stieltjes integral. In the case of distorted Lebesgue measures, several properties of this new integral are obtained. As an application, the concept of Choquet line integral of second kind is introduced and some of its properties are obtain
APA, Harvard, Vancouver, ISO, and other styles
2

Narita, Keiko, Kazuhisa Nakasho, and Yasunari Shidama. "Riemann-Stieltjes Integral." Formalized Mathematics 24, no. 3 (2016): 199–204. http://dx.doi.org/10.1515/forma-2016-0016.

Full text
Abstract:
Abstract In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties. In Sec. 3, we defined Riemann-Stieltjes integral. Referring to the way of the article [7], we described the definitions. In the last section, we proved theorems about linearity of Riemann-Stielt
APA, Harvard, Vancouver, ISO, and other styles
3

Rumlawang, Francis Y., and Harimanus Batkunde. "SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES." BAREKENG: Jurnal Ilmu Matematika dan Terapan 1, no. 2 (2007): 25–30. http://dx.doi.org/10.30598/barekengvol1iss2pp25-30.

Full text
Abstract:
If is limited and []ℜ→baf,:[]ℜ→ba,:α Monotone increase in [, is Riemann-Stieltjes integral able to α on ] ba,[]ba, simply written by[]αRSf∈ if . With JI=()()xdxfIbaα∫= is called Riemann Stieltjes lower integral f to α and ()()xdxfJbaα∫= is called Riemann Stieltjes upper integral f to α. Then is called Riemann Stieltjes upper integral f to ()()∫==baxdxfJIαα on [. if f ang g is Riemann Stieltjes integralable, and, k oe √ then f + g, kf, and fg is also Riemann Stieltjes integralable. But if f and ] ba,α have united discontinue point then f is not Riemann Stieltjes integralable on α
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Wenjie, Shuman Meng, and Yujun Cui. "Resonant Integral Boundary Value Problems for Caputo Fractional Differential Equations." Mathematical Problems in Engineering 2018 (August 7, 2018): 1–8. http://dx.doi.org/10.1155/2018/5438592.

Full text
Abstract:
This paper deals with the following Caputo fractional differential equations with Riemann-Stieltjes integral boundary conditions Dc0+αut=ft,ut,u′t,u′′t, t∈0,1, u0=u′′0=0, u1=∫01‍utdAt, where Dc0+α denotes the standard Caputo derivative, α∈(2,3]; ∫01x(t)dA(t) denotes the Riemann-Stieltjes integrals of x with respect to A. By mean of coincidence degree theory, we obtain the existence of solutions for the above fractional BVP at resonance. In the end, according to the main results, we give a typical example.
APA, Harvard, Vancouver, ISO, and other styles
5

Pirade, Septian, Tohap Manurung, and Jullia Titaley. "Integral Riemann-Stieltjes Pada Fungsi Bernilai Real." d'CARTESIAN 6, no. 1 (2017): 1. http://dx.doi.org/10.35799/dc.6.1.2017.14987.

Full text
Abstract:
Integral Riemann-Stieltjes merupakan generalisasi dari Integral Riemann, kedua Integral ini memiliki hubungan, juga beberapa sifat dasar pada Integral Riemann dapat diberlakukan pada Integral Riemann-Stieltjes. Misalkan f dan a adalah fungsi bernilai real yang terbatas pada interval [a,b]. Jika f ϵ R[a,b] dan f ϵ Ra[a,b], maka sifat terbatas, monoton naik, linear penjumlahan dan linear perkalian terhadap konstanta yang berlaku pada fungsi f yang terintegral Riemann, berlaku juga pada fungsi f yang terintegral Riemann-Stieltjes. Jika a(x) = x, maka integral Riemann-Stieltjes ekuivalen dengan in
APA, Harvard, Vancouver, ISO, and other styles
6

Bradley, R. E. "The Riemann-Stieltjes Integral." Missouri Journal of Mathematical Sciences 6, no. 1 (1994): 20–28. http://dx.doi.org/10.35834/1994/0601020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Štajner-Papuga, Ivana, Tatjana Grbić, and Martina Daňková. "Pseudo-Riemann–Stieltjes integral." Information Sciences 179, no. 17 (2009): 2923–33. http://dx.doi.org/10.1016/j.ins.2008.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Makogin, Vitalii, and Yuliya Mishura. "Fractional integrals, derivatives and integral equations with weighted Takagi–Landsberg functions." Nonlinear Analysis: Modelling and Control 25, no. 6 (2020): 1079–106. http://dx.doi.org/10.15388/namc.2020.25.20566.

Full text
Abstract:
In this paper, we find fractional Riemann–Liouville derivatives for the Takagi–Landsberg functions. Moreover, we introduce their generalizations called weighted Takagi–Landsberg functions, which have arbitrary bounded coefficients in the expansion under Schauder basis. The class of weighted Takagi–Landsberg functions of order H > 0 on [0; 1] coincides with the class of H-Hölder continuous functions on [0; 1]. Based on computed fractional integrals and derivatives of the Haar and Schauder functions, we get a new series representation of the fractional derivatives of a Hölder continuous funct
APA, Harvard, Vancouver, ISO, and other styles
9

LUKKARINEN, JANI, and MIKKO S. PAKKANEN. "ON THE POSITIVITY OF RIEMANN–STIELTJES INTEGRALS." Bulletin of the Australian Mathematical Society 87, no. 3 (2012): 400–405. http://dx.doi.org/10.1017/s0004972712000639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yaskov, Pavel. "On pathwise Riemann–Stieltjes integrals." Statistics & Probability Letters 150 (July 2019): 101–7. http://dx.doi.org/10.1016/j.spl.2019.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!