Academic literature on the topic 'Riemann-Roch theorem'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riemann-Roch theorem.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Riemann-Roch theorem"

1

Das, Mrinal Kanti, and Satya Mandal. "A Riemann–Roch theorem." Journal of Algebra 301, no. 1 (July 2006): 148–64. http://dx.doi.org/10.1016/j.jalgebra.2005.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoyois, Marc, Pavel Safronov, Sarah Scherotzke, and Nicolò Sibilla. "The categorified Grothendieck–Riemann–Roch theorem." Compositio Mathematica 157, no. 1 (January 2021): 154–214. http://dx.doi.org/10.1112/s0010437x20007642.

Full text
Abstract:
In this paper we prove a categorification of the Grothendieck–Riemann–Roch theorem. Our result implies in particular a Grothendieck–Riemann–Roch theorem for Toën and Vezzosi's secondary Chern character. As a main application, we establish a comparison between the Toën–Vezzosi Chern character and the classical Chern character, and show that the categorified Chern character recovers the classical de Rham realization.
APA, Harvard, Vancouver, ISO, and other styles
3

Nori, Madhav V. "The Hirzebruch-Riemann-Roch theorem." Michigan Mathematical Journal 48, no. 1 (2000): 473–82. http://dx.doi.org/10.1307/mmj/1030132729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gillet, Henri, and Christophe Soul�. "An arithmetic Riemann-Roch theorem." Inventiones Mathematicae 110, no. 1 (December 1992): 473–543. http://dx.doi.org/10.1007/bf01231343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pappas, Georgios. "Integral Grothendieck–Riemann–Roch theorem." Inventiones mathematicae 170, no. 3 (July 18, 2007): 455–81. http://dx.doi.org/10.1007/s00222-007-0067-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Navarro, Alberto. "On Grothendieck’s Riemann–Roch theorem." Expositiones Mathematicae 35, no. 3 (September 2017): 326–42. http://dx.doi.org/10.1016/j.exmath.2016.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paule, Peter, and Cristian-Silviu Radu. "A Proof of the Weierstraß Gap Theorem not Using the Riemann–Roch Formula." Annals of Combinatorics 23, no. 3-4 (November 2019): 963–1007. http://dx.doi.org/10.1007/s00026-019-00459-2.

Full text
Abstract:
Abstract Usually, the Weierstraß gap theorem is derived as a straightforward corollary of the Riemann–Roch theorem. Our main objective in this article is to prove the Weierstraß gap theorem by following an alternative approach based on “first principles”, which does not use the Riemann–Roch formula. Having mostly applications in connection with modular functions in mind, we describe our approach for the case when the given compact Riemann surface is associated with the modular curve $$X_0(N)$$X0(N).
APA, Harvard, Vancouver, ISO, and other styles
8

JØRGENSEN, PETER. "NON-COMMUTATIVE CURVES AND THEIR ZETA FUNCTIONS." Journal of Algebra and Its Applications 01, no. 02 (June 2002): 175–99. http://dx.doi.org/10.1142/s0219498802000094.

Full text
Abstract:
This paper considers non-commutative curves, introduces a divisor class group and a degree map, proves a Riemann-Roch theorem, and solves the Riemann-Roch problem. These results are then used to prove the zeta function of a non-commutative curve over a finite field satisfies the two first Weil conjectures.
APA, Harvard, Vancouver, ISO, and other styles
9

Douglas, Ronald G., Xiang Tang, and Guoliang Yu. "An analytic Grothendieck Riemann Roch theorem." Advances in Mathematics 294 (May 2016): 307–31. http://dx.doi.org/10.1016/j.aim.2016.02.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramadoss, Ajay C. "A generalized Hirzebruch Riemann–Roch theorem." Comptes Rendus Mathematique 347, no. 5-6 (March 2009): 289–92. http://dx.doi.org/10.1016/j.crma.2009.01.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Riemann-Roch theorem"

1

Shklyarov, Dmytro. "Hirzebruch-Riemann-Roch theorem for differential graded algebras." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schulze, Bert-Wolfgang, and Nikolai Tarkhanov. "The Riemann-Roch theorem for manifolds with conical singularities." Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2505/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Quan. "On Deligne's functorial Riemann-Roch theorem in positive characteristic." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2365/.

Full text
Abstract:
Dans cette thèse, on donne une nouvelle preuve d'une variante du théorème factoriel Deligne-Riemann-Roch dans le cas de caractéristique positive en utilisant des idées qui apparaissent dans la preuve du Pink et Rössler du théorème d'Adams-Riemann-Roch en caractéristique positive. La méthode du Pink et Rössler qui est valide en caractéristique positive et qui est complétement différente de preuve classique, nous permettra de montrer le théorème factoriel de Deligne-Riemann-Roch d'une façon plus facile et direct. Notre preuve est aussi partiellement compatible avec l'isomorphisme de Mumford
In this note, we give a proof for a variant of the functorial Deligne-Riemann-Roch theorem in positive characteristic based on ideas appearing in Pink and Rössler's proof of the Adams-Riemann-Roch theorem in positive characteristic (see [14]). The method of their proof appearing in [14], which is valid for any positive characteristic and which is completely different from the classical proof, will allow us to prove the functorial Deligne-Riemann-Roch theorem in a much easier and more direct way. Our proof is also partially compatible with Mumford's isomorphism
APA, Harvard, Vancouver, ISO, and other styles
4

Hahn, Tobias. "An arithmetic Riemann-Roch theorem for metrics with cusps." Aachen Shaker, 2009. http://d-nb.info/997223146/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

De, Gaetano Giovanni. "A regularized arithmetic Riemann-Roch theorem via metric degeneration." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19227.

Full text
Abstract:
Das Hauptresultat dieser Arbeit ist ein regularisierter arithmetischer Satz von Riemann-Roch für ein hermitesches Geradenbündel, die isometrisch zum Geradenbündel den Spitzenformen vom geraden Gewicht ist, auf eine arithmetische Fläche, deren komplexe Faser isometrisch zu einer hyperbolischen Riemannschen Fläche ohne elliptische Punkte ist. Der Beweis des Resultats erfolgt durch metrische Degeneration: Wir regularisieren die betreffenden Metriken in einer Umgebung der Singularitäten, wenden dann den arithmetischen Riemann-Roch-Satz von Gillet und Soulé an und lassen schließlich den Parameter gegen Null gehen. Durch die metrische Degeneration entsteht auf beiden Seiten der Formel ein divergenter Term. Die asymptotische Entwicklung der Divergenz berechnet sich auf der einen Seite direkt aus der Definition der glatten arithmetischen Selbstschnittzahlen. Der divergente Term auf der anderen Seite ist die zeta-regularisierte Determinante des zu den regularisierten Metriken assoziierten Laplace-Operators, der auf den 1-Formen mit Werten in dem betrachteten hermitischen Geradenbündel operiert. Wir definieren und berechnen zuerst eine Regularisiereung des entsprechenden zu den singulären Metriken assoziierten Laplace-Operators; diese wird später im regularisierten Riemann-Roch-Satz auftauchen. Zu diesem Zweck passen wir Ideen von Jorgenson-Lundelius, D'Hoker-Phong und Sarnak auf die vorliegende Situation an und verallgemeinern diese. Schließlich beweisen wir eine Formel für den zum betrachteten hermitischen Geradenbündel assoziierten Wärmeleitungskern auf der Diagonalen bei einer Modellspitze. Diese Darstellung steht im Zusammenhang mit einer Entwicklung nach zur Whittaker-Gleichung assoziierten Eigenfunktionen, die im Anhang bewiesen wird. Weitere Abschätzungen des zum betrachteten hermitischen Geradenbündel gehörigen Wärmeleitungskern auf der komplexe Faser der arithmetischen Fläche schließen den Beweis des Hauptresultats ab.
The main result of the dissertation is an arithmetic Riemann-Roch theorem for the hermitian line bundle of cusp form of given even integer weights on an arithmetic surface whose complex fiber is isometric to an hyperbolic Riemann surface without elliptic points. The proof proceeds by metric degeneration: We regularize the metric under consideration in a neighborhood of the singularities, then we apply the arithmetic Riemann-Roch theorem of Gillet and Soulé, and finally we let the parameter go to zero. Both sides of the formula blow up through metric degeneration. On one side the exact asymptotic expansion is computed from the definition of the smooth arithmetic intersection numbers. The divergent term on the other side is the zeta-regularized determinant of the Laplacian acting on 1-forms with values in the chosen hermitian line bundle associated to the regularized metrics. We first define and compute a regularization of the determinant of the corresponding Laplacian associated to the singular metrics, which will later occur int he regularized arithmetic Riemann-Roch theorem. To do so we adapt and generalize ideas od Jorgenson-Lundelius, D'Hoker-Phong, and Sarnak. Then, we prove a formula for the on-diagonal heat kernel associated to the chosen hermitian line bundle on a model cusp, from which its behavior close to a cusp is transparent. This expression is related to an expansion in terms of eigenfunctions associated to the Whittaker equation, which we prove in an appendix. Further estimates on the heat kernel associated to the chosen hermitian line bundle on the complex fiber of the arithmetic surface prove the main theorem.
APA, Harvard, Vancouver, ISO, and other styles
6

Arruda, Rafael Lucas de [UNESP]. "Teorema de Riemann-Roch e aplicações." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/86493.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-25Bitstream added on 2014-06-13T20:28:17Z : No. of bitstreams: 1 arruda_rl_me_sjrp.pdf: 624072 bytes, checksum: 23ddd00e27d1ad781e2d1cec2cb65dee (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica
The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
APA, Harvard, Vancouver, ISO, and other styles
7

Hahn, Tobias [Verfasser]. "An arithmetic Riemann-Roch theorem for metrics with cusps / Tobias Hahn." Aachen : Shaker, 2009. http://d-nb.info/1156518318/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arruda, Rafael Lucas de. "Teorema de Riemann-Roch e aplicações /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/86493.

Full text
Abstract:
Orientador: Parham Salehyan
Banca: Eduardo de Sequeira Esteves
Banca: Jéfferson Luiz Rocha Bastos
Resumo: O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica
Abstract: The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
Mestre
APA, Harvard, Vancouver, ISO, and other styles
9

Porto, Anderson Corrêa. "Divisores sobre curvas e o Teorema de Riemann-Roch." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6612.

Full text
Abstract:
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-03-28T11:17:02Z No. of bitstreams: 1 andersoncorreaporto.pdf: 567494 bytes, checksum: e685a947374868ceaa838290c83bc61a (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-04-09T19:23:34Z (GMT) No. of bitstreams: 1 andersoncorreaporto.pdf: 567494 bytes, checksum: e685a947374868ceaa838290c83bc61a (MD5)
Made available in DSpace on 2018-04-09T19:23:34Z (GMT). No. of bitstreams: 1 andersoncorreaporto.pdf: 567494 bytes, checksum: e685a947374868ceaa838290c83bc61a (MD5) Previous issue date: 2018-02-08
O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.
The goal of this work is the study of basic concepts of Algebraic Geometry from the classical point of view. The central focus of the paper is the study of Riemann-Roch Theorem and some of its applications. This theorem constitutes an important tool in the study of classical Algebraic Geometry since it allows, for example, the calculation of the genus of a non-singular projective curve in the projective space of dimension two. For the development of the study of the Riemann-Roch Theorem and its applications we will study concepts such as: varieties, dimension, Weil differentials, divisors, divisors on curves and the Adèle topological ring.
APA, Harvard, Vancouver, ISO, and other styles
10

Kramer, Jürg [Gutachter], and Gerard [Gutachter] Freixas. "A regularized arithmetic Riemann-Roch theorem via metric degeneration / Gutachter: Jürg Kramer, Gerard Freixas." Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182540503/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Riemann-Roch theorem"

1

William, Fulton. Riemann-Roch algebra. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Faltings, Gerd. Lectures on the arithmetic Riemann-Roch theorem. Princeton, N.J: Princeton University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aitken, Wayne. An arithmetic Riemann-Roch theorem for singular arithmetic surfaces. Providence, R.I: American Mathematical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kha, Minh, and Peter Kuchment. Liouville-Riemann-Roch Theorems on Abelian Coverings. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67428-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geometry and codes. Dordrecht [Netherlands]: Kluwer Academic Publishers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bárcenas, Noé, and Monica Moreno Rocha. Mexican mathematicians abroad: Recent contributions : first workshop, Matematicos Mexicanos Jovenes en el Mundo, August 22-24, 2012, Centro de Investigacion en Matematicas, A.C., Guanajuato, Mexico. Edited by Galaz-García Fernando editor. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jeremy, Gray. The Riemann-Roch Theorem: 100 Years of Algebra and Geometry. World Scientific Pub Co Inc, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faltings, Gerd. Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127. Princeton University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bismut, Jean-Michel. Hypoelliptic Laplacian and Bott-Chern Cohomology: A Theorem of Riemann-Roch-Grothendieck in Complex Geometry. Springer International Publishing AG, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bismut, Jean-Michel. Hypoelliptic Laplacian and Bott–Chern Cohomology: A Theorem of Riemann–Roch–Grothendieck in Complex Geometry. Birkhäuser, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Riemann-Roch theorem"

1

Tsfasman, M. A., and S. G. Vlăduţ. "Riemann-Roch Theorem." In Algebraic-Geometric Codes, 141–67. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3810-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fulton, William. "The Riemann—Roch Theorem." In Graduate Texts in Mathematics, 295–311. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4180-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

A’Campo, Norbert, Vincent Alberge, and Elena Frenkel. "The Riemann–Roch Theorem." In From Riemann to Differential Geometry and Relativity, 389–411. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60039-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lorenzini, Dino. "The Riemann-Roch Theorem." In Graduate Studies in Mathematics, 305–38. Providence, Rhode Island: American Mathematical Society, 1996. http://dx.doi.org/10.1090/gsm/009/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Varolin, Dror. "The Riemann-Roch Theorem." In Graduate Studies in Mathematics, 211–21. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/gsm/125/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Popescu-Pampu, Patrick. "The Riemann–Roch Theorem." In What is the Genus?, 43–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42312-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ciliberto, Ciro. "The Riemann–Roch Theorem." In UNITEXT, 301–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71021-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Holme, Audun. "The Riemann-Roch Theorem." In A Royal Road to Algebraic Geometry, 329–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19225-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weil, André. "The theorem of Riemann-Roch." In Basic Number Theory, 96–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lang, Serge. "The Faltings Riemann-Roch Theorem." In Introduction to Arakelov Theory, 102–30. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-1031-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Riemann-Roch theorem"

1

DIEP, DO NGOC. "RIEMANN-ROCH THEOREM AND INDEX THEOREM IN NON-COMMUTATIVE GEOMETRY." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702548_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kasparian, Azniv. "Riemann-Roch Theorem and Mac Williams identities for an additive code with respect to a saturated lattice." In 2020 Algebraic and Combinatorial Coding Theory (ACCT). IEEE, 2020. http://dx.doi.org/10.1109/acct51235.2020.9383243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography