Dissertations / Theses on the topic 'Riemann-Roch theorem'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Riemann-Roch theorem.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Shklyarov, Dmytro. "Hirzebruch-Riemann-Roch theorem for differential graded algebras." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1381.
Full textSchulze, Bert-Wolfgang, and Nikolai Tarkhanov. "The Riemann-Roch theorem for manifolds with conical singularities." Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2505/.
Full textXu, Quan. "On Deligne's functorial Riemann-Roch theorem in positive characteristic." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2365/.
Full textIn this note, we give a proof for a variant of the functorial Deligne-Riemann-Roch theorem in positive characteristic based on ideas appearing in Pink and Rössler's proof of the Adams-Riemann-Roch theorem in positive characteristic (see [14]). The method of their proof appearing in [14], which is valid for any positive characteristic and which is completely different from the classical proof, will allow us to prove the functorial Deligne-Riemann-Roch theorem in a much easier and more direct way. Our proof is also partially compatible with Mumford's isomorphism
Hahn, Tobias. "An arithmetic Riemann-Roch theorem for metrics with cusps." Aachen Shaker, 2009. http://d-nb.info/997223146/04.
Full textDe, Gaetano Giovanni. "A regularized arithmetic Riemann-Roch theorem via metric degeneration." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19227.
Full textThe main result of the dissertation is an arithmetic Riemann-Roch theorem for the hermitian line bundle of cusp form of given even integer weights on an arithmetic surface whose complex fiber is isometric to an hyperbolic Riemann surface without elliptic points. The proof proceeds by metric degeneration: We regularize the metric under consideration in a neighborhood of the singularities, then we apply the arithmetic Riemann-Roch theorem of Gillet and Soulé, and finally we let the parameter go to zero. Both sides of the formula blow up through metric degeneration. On one side the exact asymptotic expansion is computed from the definition of the smooth arithmetic intersection numbers. The divergent term on the other side is the zeta-regularized determinant of the Laplacian acting on 1-forms with values in the chosen hermitian line bundle associated to the regularized metrics. We first define and compute a regularization of the determinant of the corresponding Laplacian associated to the singular metrics, which will later occur int he regularized arithmetic Riemann-Roch theorem. To do so we adapt and generalize ideas od Jorgenson-Lundelius, D'Hoker-Phong, and Sarnak. Then, we prove a formula for the on-diagonal heat kernel associated to the chosen hermitian line bundle on a model cusp, from which its behavior close to a cusp is transparent. This expression is related to an expansion in terms of eigenfunctions associated to the Whittaker equation, which we prove in an appendix. Further estimates on the heat kernel associated to the chosen hermitian line bundle on the complex fiber of the arithmetic surface prove the main theorem.
Arruda, Rafael Lucas de [UNESP]. "Teorema de Riemann-Roch e aplicações." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/86493.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica
The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
Hahn, Tobias [Verfasser]. "An arithmetic Riemann-Roch theorem for metrics with cusps / Tobias Hahn." Aachen : Shaker, 2009. http://d-nb.info/1156518318/34.
Full textArruda, Rafael Lucas de. "Teorema de Riemann-Roch e aplicações /." São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/86493.
Full textBanca: Eduardo de Sequeira Esteves
Banca: Jéfferson Luiz Rocha Bastos
Resumo: O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica
Abstract: The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
Mestre
Porto, Anderson Corrêa. "Divisores sobre curvas e o Teorema de Riemann-Roch." Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6612.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-04-09T19:23:34Z (GMT) No. of bitstreams: 1 andersoncorreaporto.pdf: 567494 bytes, checksum: e685a947374868ceaa838290c83bc61a (MD5)
Made available in DSpace on 2018-04-09T19:23:34Z (GMT). No. of bitstreams: 1 andersoncorreaporto.pdf: 567494 bytes, checksum: e685a947374868ceaa838290c83bc61a (MD5) Previous issue date: 2018-02-08
O objetivo desse trabalho é o estudo de conceitos básicos da Geometria Algébrica sob o ponto de vista clássico. O foco central do trabalho é o estudo do Teorema de Riemann- Roch e algumas de suas aplicações. Esse teorema constitui uma importante ferramenta no estudo da Geometria Algébrica clássica uma vez que possibilita, por exemplo, o cáculo do gênero de uma curva projetiva não singular no espaço projetivo de dimensão dois. Para o desenvolvimento do estudo do Teorema de Riemann-Roch e suas aplicações serão estudados conceitos tais como: variedades, dimensão, diferenciais de Weil, divisores, divisores sobre curvas e o anel topológico Adèle.
The goal of this work is the study of basic concepts of Algebraic Geometry from the classical point of view. The central focus of the paper is the study of Riemann-Roch Theorem and some of its applications. This theorem constitutes an important tool in the study of classical Algebraic Geometry since it allows, for example, the calculation of the genus of a non-singular projective curve in the projective space of dimension two. For the development of the study of the Riemann-Roch Theorem and its applications we will study concepts such as: varieties, dimension, Weil differentials, divisors, divisors on curves and the Adèle topological ring.
Kramer, Jürg [Gutachter], and Gerard [Gutachter] Freixas. "A regularized arithmetic Riemann-Roch theorem via metric degeneration / Gutachter: Jürg Kramer, Gerard Freixas." Berlin : Humboldt-Universität zu Berlin, 2018. http://d-nb.info/1182540503/34.
Full textPeixoto, Rafael 1983. "Algebras munidas de função peso e codigos de Goppa pontuais." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306309.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-08T08:10:04Z (GMT). No. of bitstreams: 1 Peixoto_Rafael_M.pdf: 934807 bytes, checksum: 78e7878efe9d701bf24a3bf0701e6dd5 (MD5) Previous issue date: 2007
Resumo: O objetivo principal desta dissertação é apresentar o resultado central de R. Matsumoto sobre as álgebras munidas de função peso serem anéis de coordenadas a fim de curvas algébricas com exatamente um lugar de grau um no infinito. A partir disto, pode-se concluir que os códigos de avaliação, introduzidos por Ho/holdt, van Lint e Pellikaan, construídos sobre estas álgebras são um caso particular dos códigos geométricos de Goppa, isto e, códigos de Goppa pontuais. Para isto, utilizamos resultados sobre teoria de corpos de funções algébricas, de códigos geométricos de Goppa e de álgebra comutativa. Com a introdução dos conceitos de funções ordem e peso, nos é permitido descrever os códigos de avaliação e assim determinar cotas inferiores para a distancia mínima dos seus códigos duais, que em alguns casos são melhores que as cotas de Goppa
Abstract: The main objective of this text is to present the central result of R. Matsumoto concerning those algebra with a weight function being affine coordinate ring of an affine algebraic curve with exactly one place at infinity. From that statement one can conclude that the evaluation codes, introduced by Ho/holdt, van Lint e Pellikaan, constructed on this algebra are particular cases of geometric Goppa codes, that is, one point AG codes. For this, we use results of the algebraic function fields theory, geometric Goppa codes and commutative algebra. The introduction of the concepts of order and weight functions enable us to describe the evaluation codes and thus to determine lower bounds for the minimum distance of its duals codes, in same cases, are better than the Goppa¿s bounds
Mestrado
Mestre em Matemática
Nazaikinskii, Vladimir, and Boris Sternin. "Relative elliptic theory." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2640/.
Full textHo, Man-Ho. "On the differential Grothendieck-Riemann-Roch theorems." Thesis, Boston University, 2012. https://hdl.handle.net/2144/32024.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
We investigate aspects of differential K-theory. In particular, we give a direct proof that the Freed-Lott differential analytic index is well defined, and a short proof of the differential Grothendieck-Riemann-Roch theorem in the setting of Freed-Lott differential K-theory. We also construct explicit ring isomorphisms between Freed-Lott differential K-theory and Simons-Sullivan differential K-theory, define the Simons-Sullivan differential analytic index, and prove the differential Grothendieck-Riemann-Roch theorem in the setting of Simons-Sullivan differential K-theory.
2031-01-02
Fischbacher-Weitz, Helena Beate. "Equivariant Riemann-Roch theorems for curves over perfect fields." Thesis, University of Southampton, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444966.
Full textYokura, Shoji, and yokura@sci kagoshima-u. ac jp. "Verdier--Riemann--Roch for Chern Class and Milnor Class." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi933.ps.
Full textHişil, Hüseyin. "Elliptic curves, group law, and efficient computation." Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/33233/1/H%C3%BCseyin_Hi%C5%9Fil_Thesis.pdf.
Full textUsatine, Jeremy. "Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/57.
Full textManjunath, Madhusudan Verfasser], and Kurt [Akademischer Betreuer] [Mehlhorn. "A Riemann-Roch theory for sublattices of the root lattice An, graph automorphisms and counting cycles in graphs / Madhusudan Manjunath. Betreuer: Kurt Mehlhorn." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1052292607/34.
Full textBackman, Spencer Christopher Foster. "Combinatorial divisor theory for graphs." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51908.
Full textAuth, Matthew Leonard. "The quaternionic Riemann -Roch theorem." 2002. https://scholarworks.umass.edu/dissertations/AAI3039335.
Full textRajeev, B. "Riemann Roch Theorem For Algebraic Curves." Thesis, 2005. https://etd.iisc.ac.in/handle/2005/1448.
Full textRajeev, B. "Riemann Roch Theorem For Algebraic Curves." Thesis, 2005. http://etd.iisc.ernet.in/handle/2005/1448.
Full textZheng, Weiqiong. "The Riemann Roch Theorem (for algebraic curves)." Thesis, 2017. http://hdl.handle.net/1885/173640.
Full textChang, Yu-Chan, and 張育展. "The Index Theorem from Gauss-Bonnet and Riemann-Roch Theorem." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/92526436832807455591.
Full text國立中央大學
數學研究所
98
In this thesis, we prove two important theorems in geometry. In chapter one, we state the Gauss-Bonnet theorem on even dimensional manifold and give the detail of the proof of two dimensional case. The proof is based on the paper "A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifold", published by S.S. Chern in 1943. A little history of this theorem is included. Chapter two and three mainly focus on Riemann-Roch theorem on one-dimensional complex manifold, Riemann surface. We establish some basics on Riemann surface in chapter two, such as divisors, holomorphic line bundles, sheaves and cohomology on sheaves, also Hodge theorem in the end of this chapter. The proof of Riemann-Roch is in the chapter three. In chapter four, we show a theorem by calculating two analytic indices of two operators, which give us Gauss-Bonnet and Riemann-Roch theorem. This theorem is the Atiyah-Singer index theorem, proved by Atiyah and Singer in 1963.
Tsai, Yi-Chia, and 蔡宜家. "Some Applications of the Riemann-Roch Theorem on Compact Riemann Surfaces." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/45710602205964904433.
Full text國立成功大學
數學系應用數學碩博士班
95
This is an exposition of the Riemann-Roch theorem and its application to the study of compact Riemann surfaces.In particular, we show that all compact Riemann surfaces are algebraic.
Liao, Sin-Ying, and 廖欣瑩. "Riemann-Roch-Hirzebruch Theorem For Circle Bundle Over A Riemann Surface." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6zvz75.
Full text國立中央大學
數學系
105
In a recent paper of Cheng, Hsiao and Tsai, they obtained a CR Riemann-Roch-Hirzebruch Theorem for CR manifolds with a circle action. In this thesis we first review the Riemann-Roch-Hirzebruch Theorem for Riemann surfaces. Then we discuss CR Riemann-Roch-Hirzebruch Theorem of Cheng, Hsiao and Tsai for a circle bundle over a Riemann surface in details.
Huang, Hao-Wei, and 黃皓偉. "A Proof of Riemann-Roch Theorem by Algebraic Methods." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/a24x7a.
Full text國立臺灣大學
數學研究所
106
We start from some basic notions, like sheaves and cohomology, and try to introduce and prove Riemann-Roch theorem in the 2-dimension case. The definition of cohomology of a sheaf is more difficult to compute in some situation. However, the Čech cohomology of a sheaf over a paracompact space is isomorphic to the usual definition of cohomology,and Čech cohomology gives us a more concrete way to think what the cohomology of a sheaf is. In chapter 3 we introduce the concept of twisted complexes. We will use it to compute Ext and the class in Čech cohomology which is in the statement of Riemann-Roch theorem, and identify this class with characteristic class Td in cochain level by direct computation.
Kerber, Michael [Verfasser]. "The enumerative geometry of rational and elliptic tropical curves and a Riemann-Roch theorem in tropical geometry / Michael Kerber." 2009. http://d-nb.info/996406573/34.
Full text