Academic literature on the topic 'Riemann-Stieltjes integral'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riemann-Stieltjes integral.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Riemann-Stieltjes integral"
Rumlawang, Francis Y., and Harimanus Batkunde. "SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES." BAREKENG: Jurnal Ilmu Matematika dan Terapan 1, no. 2 (December 1, 2007): 25–30. http://dx.doi.org/10.30598/barekengvol1iss2pp25-30.
Full textNarita, Keiko, Kazuhisa Nakasho, and Yasunari Shidama. "Riemann-Stieltjes Integral." Formalized Mathematics 24, no. 3 (September 1, 2016): 199–204. http://dx.doi.org/10.1515/forma-2016-0016.
Full textPirade, Septian, Tohap Manurung, and Jullia Titaley. "Integral Riemann-Stieltjes Pada Fungsi Bernilai Real." d'CARTESIAN 6, no. 1 (February 1, 2017): 1. http://dx.doi.org/10.35799/dc.6.1.2017.14987.
Full textBradley, R. E. "The Riemann-Stieltjes Integral." Missouri Journal of Mathematical Sciences 6, no. 1 (February 1994): 20–28. http://dx.doi.org/10.35834/1994/0601020.
Full textŠtajner-Papuga, Ivana, Tatjana Grbić, and Martina Daňková. "Pseudo-Riemann–Stieltjes integral." Information Sciences 179, no. 17 (August 2009): 2923–33. http://dx.doi.org/10.1016/j.ins.2008.09.009.
Full textWu, Hsien-Chung. "The Fuzzy Riemann-Stieltjes Integral." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 06, no. 01 (February 1998): 51–67. http://dx.doi.org/10.1142/s0218488598000045.
Full textMuchtar, Kalfin, Jullia Titaley, and Mans Mananohas. "Integral Baire-1 Stieltjes, Henstock-Stieltjes dan Riemann-Stieltjes." d'CARTESIAN 5, no. 1 (April 29, 2016): 7. http://dx.doi.org/10.35799/dc.5.1.2016.11937.
Full textZhao, Weijing, and Zhaoning Zhang. "Derivative-Based Trapezoid Rule for the Riemann-Stieltjes Integral." Mathematical Problems in Engineering 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/874651.
Full textRodionov, V. I. "The adjoint Riemann-Stieltjes integral." Russian Mathematics 51, no. 2 (February 2007): 75–79. http://dx.doi.org/10.3103/s1066369x07020107.
Full textPfeffer. "THE GENERALIZED RIEMANN-STIELTJES INTEGRAL." Real Analysis Exchange 21, no. 2 (1995): 521. http://dx.doi.org/10.2307/44152664.
Full textDissertations / Theses on the topic "Riemann-Stieltjes integral"
Chiu, Mei Choi. "General Riemann-Stieltjes integrals /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?MATH%202002%20CHIU.
Full textManço, Rafael de Freitas. "Integrais e aplicações." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-30112016-154343/.
Full textThe aim of this work is analizing the process of integration of functions. There are many generalizations of the integration concept originally addressed by Riemann integral such as the Riemann-Stieltjes integral, Lebesgue integral, Henstock-Kurzweil integral, among others. We will be specially concerned with the integral of Riemann-Stieltjes and we will show the limitations of Riemann integral about convergence of functions, leading to the need to generalize the integration process. We will apply Riemann-Stieltjes integral for the study of random variables and present an approach to the classroom, on the displacement and distance traveled by an object in uniform rectilinear motion associated to concept of area.
Leffler, Klara. "The Riemann-Stieltjes integral : and some applications in complex analysis and probability theory." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-89199.
Full textLarsson, David. "Generalized Riemann Integration : Killing Two Birds with One Stone?" Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-96661.
Full textÄnda sedan Cauchys tid har integrationsteori i huvudsak varit ett försök att åter finna Newtons Eden. Under den idylliska perioden [. . . ] var derivator och integraler [. . . ] olika sidor av samma mynt.-Peter Bullen, citerad i [24] Under de senaste århundradena har integrationsteori genomgått många förändringar och framförallt har det funnits en spänning mellan Riemanns och Lebesgues respektive angreppssätt till integration. Riemanns definition är ofta den första integral som möter en student pa grundutbildningen, medan Lebesgues integral är kraftfullare. Eftersom Lebesgues definition är mer komplicerad introduceras den först i forskarutbildnings- eller avancerade grundutbildningskurser. Integralen som framställs i det här examensarbetet utvecklades av Ralph Henstock och Jaroslav Kurzweil. Genom att på ett enkelt sätt ändra kriteriet for integrerbarhet i Riemanns definition finner vi en kraftfull integral med många av Lebesgueintegralens egenskaper. Vidare utvidgar den generaliserade Riemannintegralen klassen av integrerbara funktioner i jämförelse med Lebesgueintegralen, medan vi samtidigt erhåller en karaktärisering av Lebesgueintegralen i termer av absolutintegrerbarhet. Eftersom klassen av generaliserat Riemannintegrerbara funktioner är större än de absolutintegrerbara funktionerna blir vissa satser mer omständiga att bevisa i jämforelse med eleganta resultat i Lebesgues teori. Därtill förloras vissa viktiga egenskaper vid sammansättning av funktioner och även möjligheten till abstraktion försvåras. Integralen ska alltså ses som ett komplement till Lebesgues definition och inte en ersättning.
Valente, Maria Serra. "Stability of non-trivial solutions of stochastic differential equations driven by the fractional Brownian motion." Master's thesis, Instituto Superior de Economia e Gestão, 2019. http://hdl.handle.net/10400.5/18993.
Full textO objectivo desta dissertação é o de generalizar um resultado sobre a estabilidade exponencial de soluções triviais de equações diferenciais estocásticas com movimento Browniano fraccionário, desenvolvido por Garrido-Atienza et al., para soluções não-triviais. São apresentadas noções de cálculo fraccionário, assim como a definição e principias propriedades do movimento Browniano fraccionário. De seguida, um framework para equações diferenciais estocásticas com movimento Browniano fraccionário é definido juntamente com resultados de existência e unicidade de soluções. O resultado, original desta dissertação, é aplicado a um modelo Vasicek fraccionário de taxas de juro.
This dissertation aims to generalize a result on the exponential stability of trivial solutions of stochastic differential equations driven by the fractional Brownian motion by Garrido-Atienza et al. to non-trivial solutions in the scalar case. Notions on fractional calculus are presented, as well as the definition and main properties of the fractional Brownian motion. Subsequently the framework for SDEs driven by fractional Brownian motion with a pathwise approach is characterized along with some existence and uniqueness results. The result on stability is then applied to the fractional Vasicek model for interest rates.
info:eu-repo/semantics/publishedVersion
Santos, Leandro Nunes dos [UNESP]. "As integrais de Riemann, Riemann-Stieltjes e Lebesgue." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/94350.
Full textEste trabalho apresenta resultados importantes sobre a Teoria de Integração. Inicialmente é desenvolvida uma parte sobre Teoria da Medida, necessária para introduzir a integral de Lebesgue e suas propriedades. Também é apresentada a integral de Riemann-Stieltjes. Em seguida, são demonstrados resultados importantes sobre converg ência envolvendo as integrais de Lebesgue, resultados estes que não são válidos para integrais de Riemann. Para apresentar tais temas, usa-se mais fortemente as referências [1], [2], [3] e [4]
This study presents important results on Integration of Theory. The rst of all part is developed on Measure Theory which is necessary to introduce the Lebesgue integral and its properties and we introduce. It also shows the Riemann-Stieltjes integral. Important results are proved on convergence involving the integrals of Lebesgue, which are not valid for the Riemann integral. Im order to present these themes we strongly use the references [1], [2], [3] and [4]
Santos, Leandro Nunes dos. "As integrais de Riemann, Riemann-Stieltjes e Lebesgue /." Rio Claro, 2013. http://hdl.handle.net/11449/94350.
Full textBanca: Paulo Leandro Dattori da Silva
Banca: Ricardo Parreira da Silva
Resumo: Este trabalho apresenta resultados importantes sobre a Teoria de Integração. Inicialmente é desenvolvida uma parte sobre Teoria da Medida, necessária para introduzir a integral de Lebesgue e suas propriedades. Também é apresentada a integral de Riemann-Stieltjes. Em seguida, são demonstrados resultados importantes sobre converg ência envolvendo as integrais de Lebesgue, resultados estes que não são válidos para integrais de Riemann. Para apresentar tais temas, usa-se mais fortemente as referências [1], [2], [3] e [4]
Abstract: This study presents important results on Integration of Theory. The rst of all part is developed on Measure Theory which is necessary to introduce the Lebesgue integral and its properties and we introduce. It also shows the Riemann-Stieltjes integral. Important results are proved on convergence involving the integrals of Lebesgue, which are not valid for the Riemann integral. Im order to present these themes we strongly use the references [1], [2], [3] and [4]
Mestre
Giorgetti, Matteo. "Integrale di Riemann-Stieltjes e applicazioni a processi stocastici di Poisson." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/1566/.
Full textAddamiano, Laura. "L'integrale di Stieltjes e suoi sviluppi." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amslaurea.unibo.it/800/.
Full textBooks on the topic "Riemann-Stieltjes integral"
Dragomir, Silvestru Sever. Riemann–Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle. CRC Press, 2019. http://dx.doi.org/10.1201/9780429326950.
Full textRiemann-Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle: With Applications to Unitary Operators in Hilbert Spaces. Taylor & Francis Group, 2019.
Find full textDragomir, Silvestru Sever. Riemann-Stieltjes Integral Inequalities for Complex Functions Defined on Unit Circle: With Applications to Unitary Operators in Hilbert Spaces. Taylor & Francis Group, 2019.
Find full textSegundo Curso sobre Elementos Básicos del Análisis Matemático. UJAT, 2021. http://dx.doi.org/10.19136/book.189.
Full textBook chapters on the topic "Riemann-Stieltjes integral"
Bartle, Robert. "Riemann-Stieltjes integral." In Graduate Studies in Mathematics, 391–99. Providence, Rhode Island: American Mathematical Society, 2001. http://dx.doi.org/10.1090/gsm/032/28.
Full textKaczor, W. J., and M. T. Nowak. "The Riemann-Stieltjes integral." In The Student Mathematical Library, 3–57. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/stml/021/01.
Full textKaczor, W. J., and M. T. Nowak. "The Riemann-Stieltjes integral." In The Student Mathematical Library, 97–246. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/stml/021/03.
Full textRubel, Lee A., and James E. Colliander. "The Riemann-Stieltjes Integral." In Entire and Meromorphic Functions, 3–5. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-0735-1_2.
Full textLang, Serge. "Riemann-Stieltjes Integral and Measure." In Real and Functional Analysis, 278–94. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0897-6_10.
Full textMackevičius, Vigirdas. "Other Definitions: Riemann and Stieltjes Integrals." In Integral and Measure, 59–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119037514.ch5.
Full textWalter, Wolfgang. "Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale." In Grundwissen Mathematik, 190–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-96792-4_6.
Full textWalter, Wolfgang. "Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale." In Springer-Lehrbuch, 190–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55922-8_6.
Full textWalter, Wolfgang. "Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale." In Grundwissen Mathematik, 190–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97366-6_6.
Full textWalter, Wolfgang. "Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale." In Springer-Lehrbuch, 190–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97614-8_6.
Full textConference papers on the topic "Riemann-Stieltjes integral"
Stajner-Papuga, Ivana, Tatjana Grbic, and Martina Dankova. "A note on pseudo Riemann-Stieltjes integral." In 2007 5th International Symposium on Intelligent Systems and Informatics. IEEE, 2007. http://dx.doi.org/10.1109/sisy.2007.4342627.
Full textRen, Xue-kun, Cong-xin Wu, and Zhi-gang Zhu. "A New Kind of Fuzzy Riemann-Stieltjes Integral." In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.259056.
Full textJawarneh, Y. M., and M. S. M. Noorani. "The Beesack-Darst-Poolard inequality for Riemann-Stieltjes double integral." In THE 2013 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium. AIP Publishing LLC, 2013. http://dx.doi.org/10.1063/1.4858788.
Full textCERONE, P., and S. S. DRAGOMIR. "NEW BOUNDS FOR THE THREE-POINT RULE INVOLVING THE RIEMANN-STIELTJES INTEGRAL." In Proceedings of the Wollongong Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776372_0006.
Full textDragomir, Sever S., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Accurate Approximations of the Riemann-Stieltjes Integral with (l,L)-Lipschitzian Integrators." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790242.
Full textManjuram, R., and V. Muthulakshmi. "Oscillatory behavior of damped second-order nonlinear delay differential equations with riemann-stieltjes integral." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS RESEARCH (ICAMR - 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017693.
Full text