Academic literature on the topic 'Riemannian and barycentric geometry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riemannian and barycentric geometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Riemannian and barycentric geometry"

1

Pihajoki, Pauli, Matias Mannerkoski, and Peter H. Johansson. "Barycentric interpolation on Riemannian and semi-Riemannian spaces." Monthly Notices of the Royal Astronomical Society 489, no. 3 (2019): 4161–69. http://dx.doi.org/10.1093/mnras/stz2447.

Full text
Abstract:
ABSTRACT Interpolation of data represented in curvilinear coordinates and possibly having some non-trivial, typically Riemannian or semi-Riemannian geometry is a ubiquitous task in all of physics. In this work, we present a covariant generalization of the barycentric coordinates and the barycentric interpolation method for Riemannian and semi-Riemannian spaces of arbitrary dimension. We show that our new method preserves the linear accuracy property of barycentric interpolation in a coordinate-invariant sense. In addition, we show how the method can be used to interpolate constrained quantitie
APA, Harvard, Vancouver, ISO, and other styles
2

Miranda Jr., Gastão F., Gilson Giraldi, Carlos E. Thomaz, and Daniel Millàn. "Composition of Local Normal Coordinates and Polyhedral Geometry in Riemannian Manifold Learning." International Journal of Natural Computing Research 5, no. 2 (2015): 37–68. http://dx.doi.org/10.4018/ijncr.2015040103.

Full text
Abstract:
The Local Riemannian Manifold Learning (LRML) recovers the manifold topology and geometry behind database samples through normal coordinate neighborhoods computed by the exponential map. Besides, LRML uses barycentric coordinates to go from the parameter space to the Riemannian manifold in order to perform the manifold synthesis. Despite of the advantages of LRML, the obtained parameterization cannot be used as a representational space without ambiguities. Besides, the synthesis process needs a simplicial decomposition of the lower dimensional domain to be efficiently performed, which is not c
APA, Harvard, Vancouver, ISO, and other styles
3

Sabatini, Luca. "Volume Comparison in the presence of a Gromov-Hausdorff ε−approximation II". Annals of West University of Timisoara - Mathematics and Computer Science 56, № 1 (2018): 99–135. http://dx.doi.org/10.2478/awutm-2018-0008.

Full text
Abstract:
Abstract Let (M, g) be any compact, connected, Riemannian manifold of dimension n. We use a transport of measures and the barycentre to construct a map from (M, g) onto a Hyperbolic manifold (ℍn/Λ, g0) (Λ is a torsionless subgroup of Isom(ℍn,g0)), in such a way that its jacobian is sharply bounded from above. We make no assumptions on the topology of (M, g) and on its curvature and geometry, but we only assume the existence of a measurable Gromov-Hausdorff ε-approximation between (ℍn/Λ, g0) and (M, g). When the Hausdorff approximation is continuous with non vanishing degree, this leads to a sh
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, H., and Wilhelm Klingenberg. "Riemannian Geometry." American Mathematical Monthly 92, no. 7 (1985): 519. http://dx.doi.org/10.2307/2322529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lord, Nick, M. P. do Carmo, S. Gallot, et al. "Riemannian Geometry." Mathematical Gazette 79, no. 486 (1995): 623. http://dx.doi.org/10.2307/3618122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mrugała, R. "Riemannian geometry." Reports on Mathematical Physics 27, no. 2 (1989): 283–85. http://dx.doi.org/10.1016/0034-4877(89)90011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

M.Osman, Mohamed. "Differentiable Riemannian Geometry." International Journal of Mathematics Trends and Technology 29, no. 1 (2016): 45–55. http://dx.doi.org/10.14445/22315373/ijmtt-v29p508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dimakis, Aristophanes, and Folkert Müller-Hoissen. "Discrete Riemannian geometry." Journal of Mathematical Physics 40, no. 3 (1999): 1518–48. http://dx.doi.org/10.1063/1.532819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beggs, Edwin J., and Shahn Majid. "Poisson–Riemannian geometry." Journal of Geometry and Physics 114 (April 2017): 450–91. http://dx.doi.org/10.1016/j.geomphys.2016.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strichartz, Robert S. "Sub-Riemannian geometry." Journal of Differential Geometry 24, no. 2 (1986): 221–63. http://dx.doi.org/10.4310/jdg/1214440436.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Riemannian and barycentric geometry"

1

Farina, Sofia. "Barycentric Subspace Analysis on the Sphere and Image Manifolds." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15797/.

Full text
Abstract:
In this dissertation we present a generalization of Principal Component Analysis (PCA) to Riemannian manifolds called Barycentric Subspace Analysis and show some applications. The notion of barycentric subspaces has been first introduced first by X. Pennec. Since they lead to hierarchy of properly embedded linear subspaces of increasing dimension, they define a generalization of PCA on manifolds called Barycentric Subspace Analysis (BSA). We present a detailed study of the method on the sphere since it can be considered as the finite dimensional projection of a set of probability densities tha
APA, Harvard, Vancouver, ISO, and other styles
2

Lord, Steven. "Riemannian non-commutative geometry /." Title page, abstract and table of contents only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phl8661.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maignant, Elodie. "Plongements barycentriques pour l'apprentissage géométrique de variétés : application aux formes et graphes." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4096.

Full text
Abstract:
Une image obtenue par IRM, c'est plus de 60 000 pixels. La plus grosse protéine connue chez l'être humain est constituée d'environ 30 000 acides aminés. On parle de données en grande dimension. En réalité, la plupart des données en grande dimension ne le sont qu'en apparence. Par exemple, de toutes les images que l'on pourrait générer aléatoirement en coloriant 256 x 256 pixels, seule une infime proportion ressemblerait à l'image IRM d'un cerveau humain. C'est ce qu'on appelle la dimension intrinsèque des données. En grande dimension, apprentissage rime donc souvent avec réduction de dimension
APA, Harvard, Vancouver, ISO, and other styles
4

Lidberg, Petter. "Barycentric and harmonic coordinates." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hall, Stuart James. "Numerical methods and Riemannian geometry." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferreira, Ana Cristina Castro. "Riemannian geometry with skew torsion." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Bao Qiang. "Geometry of complete Riemannian Submanifolds." Lyon 1, 1998. http://www.theses.fr/1998LYO10064.

Full text
Abstract:
La géométrie rienmannienne des sous-variétés a connu ces cinquante dernières années un essor considérable, essentiellement dans le cas compact. Cette thèse a pour but de développer des outils consacrés à l'étude des sous-variétés riemanniennes complètes. Ces outils sont proches de ceux développés par Bochner et Lichnérowicz. Ils sont particulièrement adaptés aux problèmes de rigidité de certains types de sous-variétés complètes : celles qui sont à courbure moyenne constante dans un espace hyperbolique. Il est ainsi possible d'obtenir un théorème de classification de ces sous-variétés. D'autres
APA, Harvard, Vancouver, ISO, and other styles
8

Boarotto, Francesco. "Topics in sub-Riemannian geometry." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4881.

Full text
Abstract:
This thesis is concerned with three different problems in sub-Riemannian geometry faced during my PhD. The first one is a problem in differential geometry and is about the local conformal classification of a certain class of sub-Riemannian structures. In the second one we deal with topology, and our main result establish some path-fibration properties for the Endpoint map. In the third and last problem, we begin the development of some variational calculus around critical points of the endpoint map, called abnormal controls, and we estabilish a counterpart of the classical Morse deformation te
APA, Harvard, Vancouver, ISO, and other styles
9

Palmer, Ian Christian. "Riemannian geometry of compact metric spaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34744.

Full text
Abstract:
A construction is given for which the Hausdorff measure and dimension of an arbitrary abstract compact metric space (X, d) can be encoded in a spectral triple. By introducing the concept of resolving sequence of open covers, conditions are given under which the topology, metric, and Hausdorff measure can be recovered from a spectral triple dependent on such a sequence. The construction holds for arbitrary compact metric spaces, generalizing previous results for fractals, as well as the original setting of manifolds, and also holds when Hausdorff and box dimensions differ---in particular, it does n
APA, Harvard, Vancouver, ISO, and other styles
10

Raineri, Emanuele. "Quantum Riemannian geometry of finite sets." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414738.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Riemannian and barycentric geometry"

1

Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97242-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petersen, Peter. Riemannian Geometry. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-6434-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carmo, Manfredo Perdigão do. Riemannian Geometry. Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4757-2201-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18855-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petersen, Peter. Riemannian Geometry. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26654-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gallot, Sylvestre, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-97026-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

1959-, Hulin D., and Lafontaine, J. 1944 Mar. 10-, eds. Riemannian geometry. Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sakai, T. Riemannian geometry. American Mathematical Society, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Riemannian geometry. 2nd ed. W. de Gruyter, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carmo, Manfredo Perdigão do. Riemannian geometry. Birkhäuser, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Riemannian and barycentric geometry"

1

Bambi, Cosimo. "Riemannian Geometry." In Introduction to General Relativity. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1090-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conlon, Lawrence. "Riemannian Geometry." In Differentiable Manifolds. Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4757-2284-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aubin, Thierry. "Riemannian Geometry." In Some Nonlinear Problems in Riemannian Geometry. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-13006-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kumaresan, S. "Riemannian Geometry." In A Course in Differential Geometry and Lie Groups. Hindustan Book Agency, 2002. http://dx.doi.org/10.1007/978-93-86279-08-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gadea, P. M., and J. Muñoz Masqué. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds. Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3564-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koch, Helmut. "Riemannian geometry." In Introduction to Classical Mathematics I. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3218-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McInerney, Andrew. "Riemannian Geometry." In Undergraduate Texts in Mathematics. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7732-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chow, Bennett, Peng Lu, and Lei Ni. "Riemannian geometry." In Hamilton’s Ricci Flow. American Mathematical Society, 2006. http://dx.doi.org/10.1090/gsm/077/01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gadea, Pedro M., Jaime Muñoz Masqué, and Ihor V. Mykytyuk. "Riemannian Geometry." In Analysis and Algebra on Differentiable Manifolds. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5952-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hassani, Sadri. "Riemannian Geometry." In Mathematical Physics. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01195-0_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Riemannian and barycentric geometry"

1

Moran, William, Stephen D. Howard, Douglas Cochran, and Sofia Suvorova. "Sensor management via riemannian geometry." In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012. http://dx.doi.org/10.1109/allerton.2012.6483240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hadwiger, Markus, Thomas Theußl, and Peter Rautek. "Riemannian Geometry for Scientific Visualization." In SA '22: SIGGRAPH Asia 2022. ACM, 2022. http://dx.doi.org/10.1145/3550495.3558227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

GMIRA, B., and L. VERSTRAELEN. "A CURVATURE INEQUALITY FOR RIEMANNIAN SUBMANIFOLDS IN A SEMI–RIEMANNIAN SPACE FORM." In Geometry and Topology of Submanifolds IX. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817976_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lenz, Reiner, Rika Mochizuki, and Jinhui Chao. "Iwasawa Decomposition and Computational Riemannian Geometry." In 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.1086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bejancu, Aurel. "Sub-Riemannian geometry and nonholonomic mechanics." In ALEXANDRU MYLLER MATHEMATICAL SEMINAR CENTENNIAL CONFERENCE. AIP, 2011. http://dx.doi.org/10.1063/1.3546072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Guohua. "Digital Riemannian Geometry and Its Application." In International Conference on Advances in Computer Science and Engineering. Atlantis Press, 2013. http://dx.doi.org/10.2991/cse.2013.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barachant, Alexandre, Stphane Bon, Marco Congedo, and Christian Jutten. "Common Spatial Pattern revisited by Riemannian geometry." In 2010 IEEE 12th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2010. http://dx.doi.org/10.1109/mmsp.2010.5662067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeestraten, Martijn J. A., Ioannis Havoutis, Sylvain Calinon, and Darwin G. Caldwell. "Learning task-space synergies using Riemannian geometry." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8202140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shao, Hang, Abhishek Kumar, and P. Thomas Fletcher. "The Riemannian Geometry of Deep Generative Models." In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gordina, Maria. "Riemannian geometry of Diff(S1)/S1 revisited." In Proceedings of a Satellite Conference of ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812791559_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!