Books on the topic 'Riemannian metric and distance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 41 books for your research on the topic 'Riemannian metric and distance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Gromov, Mikhael. Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser, 1999.
Find full textGrove, Karsten. Riemannian geometry: A metric entrance. University of Aarhus, Dept. of Mathemtics, 1999.
Find full text1954-, Walschap Gerard, and SpringerLink (Online service), eds. Metric foliations and curvature. Birkhäuser, 2009.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 5th ed. Addison-Wesley, 1990.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 8th ed. Pearson/Addison-Wesley, 2005.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 6th ed. Addison-Wesley, 1995.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 5th ed. Benjamin/Cummings Pub. Co., 1990.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 7th ed. Addison-Wesley, 2000.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 4th ed. Benjamin/Cummings Pub. Co., 1985.
Find full textWashington, Allyn J. Basic technical mathematics with calculus. 4th ed. Benjamin/Cummings Pub. Co., 1985.
Find full textauthor, Tian Gang 1958, ed. The geometrization conjecture. American Mathematical Society, 2014.
Find full textMetric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser Boston, 2007. http://dx.doi.org/10.1007/978-0-8176-4583-0.
Full textLaFontaine, Jacques. Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser Boston, 2010.
Find full textWalczak, Szymon M. Metric Diffusion along Foliations. Springer International Publishing AG, 2017.
Find full textGromov, Mikhail, M. Katz, S. Semmes, and P. Pansu. Metric Structures for Riemannian and Non-Riemannian Spaces (Modern Birkhäuser Classics). Birkhäuser Boston, 2006.
Find full textTuschmann, Wilderich, and David J. Wraith. Moduli Spaces of Riemannian Metrics. Birkhauser Verlag, 2015.
Find full textGromov, Misha. Metric Structures for Riemannian and Non-Riemannian Spaces (Progress in Materials Science). Birkhauser Verlag AG, 1998.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0042.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.
Full textGromov, Mikhail, M. Katz, and S. Semmes. Metric Structures for Riemannian and Non-Riemannian Spaces: Based on Structures Metriques des Varietes Riemanniennes (Progress in Mathematics). Birkhäuser Boston, 2001.
Find full textSullivan, Navin. Area, Distance, And Volume (Measure Up!). Benchmark Books (NY), 2006.
Find full textO'Donnell, Kerri. Natural Wonders of the World: Converting Distance Measurements to Metric Units. Rosen Publishing Group, 2004.
Find full textNatural Wonders of the World: Converting Distance Measurements to Metric Units. Rosen Publishing Group, 2009.
Find full textO'Donnell, Kerri. Natural Wonders of the World: Converting Distance Measurements to Metric Units. Rosen Publishing Group, 2005.
Find full textNatural Wonders of the World: Converting Distance Measurements to Metric Units. Rosen Publishing Group, 2009.
Find full textNatural Wonders of the World: Converting Distance Measurements to Metric Units. Rosen Publishing Group, 2009.
Find full textGromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance. American Mathematical Society, 2004.
Find full textRakočević, Vladimir. Fixed Point Results in W-Distance Spaces. Taylor & Francis Group, 2021.
Find full textGollin, Edward, and Alexander Rehding, eds. The Oxford Handbook of Neo-Riemannian Music Theories. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780195321333.001.0001.
Full textRajeev, S. G. Curvature and Instability. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0011.
Full textStreet, Brian. The Calder´on-Zygmund Theory II: Maximal Hypoellipticity. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691162515.003.0002.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. The Cartan structure equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0065.
Full textMashhoon, Bahram. Extension of General Relativity. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803805.003.0005.
Full textTretkoff, Paula. Riemann Surfaces, Coverings, and Hypergeometric Functions. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691144771.003.0003.
Full textWittman, David M. Spacetime Geometry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199658633.003.0011.
Full textSaha, Prasenjit, and Paul A. Taylor. The Expanding Universe. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816461.003.0008.
Full textGoliszek, Sławomir. Znaczenie komponentów dostępności transportowej w Szczecinie w latach 2009-2018 = Significance of transport acces-sibility components in Szczecin in the period 2009-2018. Instytut Geografii i Przestrzennego Zagospodarowania im. Stanisława Leszczyckiego, Polska Akademia Nauk, 2022. http://dx.doi.org/10.7163/9788361590910.
Full text