Academic literature on the topic 'Rift continental'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rift continental.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rift continental"

1

Williams, N. "Continental rift." Current Biology 12, no. 19 (2002): R643. http://dx.doi.org/10.1016/s0960-9822(02)01154-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Etheridge, M. A., P. A. Symonds, and T. G. Powell. "APPLICATION OF THE DETACHMENT MODEL FOR CONTINENTAL EXTENSION TO HYDROCARBON EXPLORATION IN EXTENSIONAL BASINS." APPEA Journal 29, no. 2 (1989): 99. http://dx.doi.org/10.1071/aj88062.

Full text
Abstract:
The extension of the continental lithosphere that gives rise to continental rifts and eventually to passive continental margins and their basins is considered generally to involve shear on one or more major, shallow dipping normal faults (detachments). The operation of these detachments induces a basic asymmetry into the extensional terrane that is analogous to that in thrust terranes. As a result, the two sides of a continental rift and conjugate passive margin segments are predicted to have contrasting structure, facies development, subsidence history and thermal evolution.The major structural consequence of the detachment model is that half- graben rather than full graben geometry is expected in rift basins, consistent with recent interpretations in a wide range of continental rifts and passive margins. Half- graben geometry dominates in the Bass Strait basins, the Canning Basin and in a number of Proterozoic rifts, and has been observed on most parts of the Australian continental margin. Variations in the along- strike geometry of extensional basins are accommodated by transfer faults or fault zones. Transfer faults are as important and widespread in rifts as the classical normal faults, and they have important consequences for hydrocarbon exploration (e.g. design of seismic surveys, structural interpretation of seismic data, play and lead development).The fundamental asymmetry of extensional basins, and their compartmentalisation by transfer faults also control to a large extent the distribution of both source and reservoir facies. A model for facies distribution in a typical rift basin is presented, together with its implications for the prime locations of juxtaposed sources and reservoirs. Maturation of syn- rift source rocks depends on both the regional heat flow history and the amount of post- rift subsidence (and therefore burial). Both of these factors are influenced, and are partly predictable by the detachment model. In particular, there may be substantial horizontal offset of both the maximum thermal anomaly and the locus of post- rift subsidence from the rift basin. Analysis of deep crustal geophysical data may aid in the interpretation of detachment geometry and, therefore, of the gross distribution of thermal and subsidence histories.
APA, Harvard, Vancouver, ISO, and other styles
3

BURKE, K. "A Continental Rift: Rio Grande Rift." Science 228, no. 4707 (1985): 1521. http://dx.doi.org/10.1126/science.228.4707.1521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ouarhache, Driss, André Charriere, Françoise Chalot-prat, and Mohamed EL Wartiti. "Triassic to early Liassic continental rifting chronology and process at the southwest margin of the Alpine Tethys (Middle Atlas and High Moulouya, Morocco); correlations with the Atlantic rifting, synchronous and diachronous." Bulletin de la Société Géologique de France 183, no. 3 (2012): 233–49. http://dx.doi.org/10.2113/gssgfbull.183.3.233.

Full text
Abstract:
AbstractApparu à l’est du rift continental atlantique, un rift continental téthysien s’est développé sur le domaine atlasique du Maroc au cours du Trias et du début du Jurassique. Dans le transect étudié du Moyen Atlas et de la Haute Moulouya (MAHM), ce début du rifting téthysien, le « rifting initial », comporta 3 étapes majeures.Au Trias supérieur, apparut une première génération de bassins syn-rift (sr1) continentaux et détritiques, associés au rejeu extensif de certaines sutures hercyniennes ; cette phase se poursuivit avec une transgression laguno-marine généralisée dans un stade post-rift (pr1) au Carnien supérieur-Norien.Au voisinage de la limite Trias-Lias, se produisit une effusion de trapps basaltiques aériens à subaquatiques ; la région subit ensuite une phase d’érosion.Au début du Lias, se différencia une deuxième génération de bassins syn-rift (sr2) continentaux ou laguno-marins, extensifs ou transtensifs, associés à un volcanisme explosif localisé sur quatre zones faillées (faille d’Adarouch, accident du Tizi n’Trettène, accident Sud Moyen atlasique, faille de Ksabi-Ahouli) ; cette phase se clôtura avec l’arrivée de la mer dans un stade post-rift (pr2) débutant au Sinémurien supérieur-Carixien inférieur.La zone du MAHM eut une histoire différente des régions occidentales du domaine atlasique, qu’il s’agisse d’un autre segment du rift atlasique (Haut Atlas de Marrakech) ou d’une bordure du rift atlantique (Haut Atlas occidental).Pendant le rifting ante-trapp, alors que ces bassins occidentaux ont été structurés par plusieurs séquences tectono-sédimentaires successives étagées du Permien supérieur au Trias supérieur, les bassins du MAHM n’enregistrèrent qu’une seule mégaséquence sédimentaire triasique. Ainsi, les rifts continentaux atlantique et Ouest atlasique furent initiés, simultanément (?), dès le Permien supérieur, tandis que le rift continental de l’Atlas central et oriental n’apparut vraisemblablement qu’au Trias supérieur. La déchirure du rift atlasique migra ainsi vers l’est de la fin du Primaire au début du Secondaire.Durant la période post-trapp, alors que les bassins occidentaux étaient le siège d’un calme tectonique relatif, une fracturation majeure affecta le MAHM, générant de nouveaux bassins sédimentaires associés à un second épisode volcanique, de nature explosive cette fois. Cette poursuite du rifting, après les dernières effusions basaltiques et avant l’arrivée de la mer jurassique, préfigura les découpages tectoniques qui continuèrent de se manifester dans les parties centrale et orientale du rift atlasique jusqu’au Jurassique moyen.
APA, Harvard, Vancouver, ISO, and other styles
5

Etheridge, M. A., P. A. Symonds, and T. G. Powell. "APPLICATION OF THE DETACHMENT MODEL FOR CONTINENTAL EXTENSION TO HYDROCARBON EXPLORATION IN EXTENSIONAL BASINS." APPEA Journal 28, no. 1 (1988): 167. http://dx.doi.org/10.1071/aj87015.

Full text
Abstract:
The extension of the continental lithosphere that gives rise to continental rifts and eventually to passive continental margins and their basins is considered generally to involve shear on one or more major, shallow dipping normal faults (detachments). The operation of these detachments induces a basic asymmetry into the extensional terrane that is analogous to that in thrust terranes. As a result, the two sides of a continental rift and conjugate passive margin segments are predicted to have contrasting structure, facies development, subsidence history and thermal evolution.The major structural consequence of the detachment model is that half-graben rather than full graben geometry is expected in rift basins, consistent with recent interpretations in a wide range of continental rifts and passive margins. Half-graben geometry dominates in the Bass Strait basins, the Canning Basin and in a number of Proterozoic rifts, and has been observed on most parts of the Australian continental margin. Variations in the along-strike geometry of extensional basins are accommodated by transfer faults or fault zones. Transfer faults are as important and widespread in rifts as the classical normal faults, and they have important consequences for hydrocarbon exploration (e.g. design of seismic surveys, structural interpretation of seismic data, play and leav development).The fundam* nal asymmetry of extensional basins, and their compartmentalisation by transfer faults also control to a large extent the distribution of both source and reservoir facies. A model for facies distribution in a typical rift basin is presented, together with its implications for the prime locations of juxtaposed sources and reservoirs. Maturation of synrift source rocks depends on both the regional heat flow history and the amount of post-rift subsidence (and therefore burial). Both of these factors are influenced, and are partly predictable by the detachment model. In particular, there may be substantial horizontal offset of both the maximum thermal anomaly and the locus of post-rift subsidence from the rift basin. Analysis of deep crustal geophysical data may aid in the interpretation of detachment geometry and, therefore, of the gross distribution of thermal and subsidence histories.
APA, Harvard, Vancouver, ISO, and other styles
6

Thomas, William A. "A Mechanism for Tectonic Inheritance at Transform Faults of the Iapetan Margin of Laurentia." Geoscience Canada 41, no. 3 (2014): 321. http://dx.doi.org/10.12789/geocanj.2014.41.048.

Full text
Abstract:
Transform faults along the Iapetan rifted continental margin of Laurentia offset the continental rift and/or bound domains of oppositely dipping low-angle detachments. Rift-parallel and transform-parallel intracratonic fault systems extend into continental crust inboard from the rifted margin. Ages of synrift igneous rocks, ranging from 765 to 530 Ma, document non-systematic diachroneity of rifting along the Iapetan margin. Synrift sedimentary accumulations show abrupt variations in thickness across transform faults, and some concentrations of synrift igneous rocks are distributed along transform faults and transform-parallel intracratonic fault systems. The greatest thicknesses of Cambrian–Ordovician passive-margin shelf-carbonate deposits are along transform margins and in continental-margin basins along transform faults, as well as along transform-parallel intracratonic fault systems, indicating anomalously great post-rift thermal subsidence along transform faults. Along the Ordovician–Permian Appalachian-Ouachita orogenic belt, a diachronous array of synorogenic clastic wedges fills foreland basins, recording tectonic-load-driven flexural subsidence of the lithosphere. The greatest thicknesses of synorogenic clastic wedges of all ages are consistently in foreland basins along transform margins and inboard from intersections of transform faults with the rifted margin, indicating systematically weaker lithosphere along transform faults. The distinctive and pervasive properties and behaviour of the lithosphere along transform faults in successive tectonic settings suggest fundamental controls on tectonic inheritance at transform faults. Recent models for continental rifting incorporate ductile extension of the mantle lithosphere beneath brittle extension of the crust; the domain of ductile extension of the mantle lithosphere may reach significantly inboard from the rifted margin of the brittle crust, accounting for rift-parallel extensional faults in the crust inboard from the rifted margin. A transform offset of a rift in brittle crust requires a similar offset in ductile extension of the mantle lithosphere, leading to differential ductile flow on opposite sides of the transform and imparting a transform-parallel distributed-shear fabric. Transform-parallel distributed shear in the mantle lithosphere provides a mechanism for brittle transform-parallel fault systems in the continental crust. Studies of seismic anisotropy show fast directions parallel with transform faults, indicating systematic orientation of crystals through transform-parallel distributed shear in the mantle lithosphere.SOMMAIRELes failles transformantes le long de la marge continentale divergente japétienne de la Laurentie décalent le rift continental et/ou les domaines accrétés en des décollements à pendages opposés faibles. Des systèmes de failles intracratoniques parallèles au rift, et parallèles à la transformation, pénètrent vers l’intérieur de la croûte continentale à partir de la marge de rift. Les âges des roches ignées syn-rift, entre 765 Ma et 530 Ma, témoignent d’une activité de rifting diachronique non-systématique le long de la marge japétienne. Des empilements sédimentaires syn-rifts montrent des variations abruptes d’épaisseur d’une faille transformante à l’autre, et des concentrations de roches ignées syn-rifts se répartissent le long des systèmes de failles transformantes et de failles intracratoniques parallèles. Les accumulations les plus épaisses de carbonates de plateforme de marge continentale passive se trouvent le long des marges de cisaillement et dans les bassins de marge continentale le long de failles transformantes, de même qu’au long des systèmes de failles intracratoniques parallèles, évoquant une subsidence anormalement forte le long des failles transformantes. Le long de la bande orogénique ordovicienne-permienne Appalaches-Ouachita, une gamme diachronique de prismes clastiques synorogéniques remplit les bassins d’avant-pays, attestant d’une subsidence par flexure lithosphérique d’origine tectonique. Les plus grandes épaisseurs de prismes clastiques synorogéniques à tous les âges sont toujours situées dans les bassins d’avant-pays le long des marges transformantes, et vers l’intérieur, à partir des intersections des failles transformantes avec la marge de rift, indiquant une lithosphère systématiquement plus fragile le long des failles transformantes. Les propriétés particulières et le comportement généralisés de la lithosphère le long des failles transformantes dans les contextes tectoniques successifs sont la marque de contrôles fondamentaux sur l'héritage tectonique des failles transformantes. Les modèles récents de rifting continental comportent une extension ductile de la lithosphère mantellique sous l’extension cassante de la croûte; le domaine d'extension ductile de la lithosphère mantellique peut s’étendre significativement vers l’intérieur de la marge de divergence de la croûte cassante, d’où les failles d'extension parallèle au rift, à l’intérieur de la croûte de la marge de divergence. Un décalage de transformation de rift de la croûte comporte un décalage du même genre de l’extension ductile de la lithosphère mantellique, ce qui implique un différentiel de flux ductile sur les bords opposés de la transformation, d’où cette fabrique d’extension parallèle à la transformation. L’extension parallèle à la transformation de la lithosphère mantellique fournit un mécanisme qui explique les systèmes de failles transformantes parallèles dans la croûte continentale. Les études de l’anisotropie sismique montre les grandes vitesses de propagation parallèles aux failles de transformations, ce qui indique une orientation systématique des cristaux induite par une extension répartie selon les cassures transformantes dans la lithosphère mantellique.
APA, Harvard, Vancouver, ISO, and other styles
7

Molnar, Nicolas E., Alexander R. Cruden, and Peter G. Betts. "Interactions between propagating rifts and linear weaknesses in the lower crust." Geosphere 15, no. 5 (2019): 1617–40. http://dx.doi.org/10.1130/ges02119.1.

Full text
Abstract:
Abstract Pre-existing structures in the crust such as shear zones, faults, and mobile belts are known to exert a significant control on the structural evolution of continental rifts. However, the influence of such features when the extension direction progressively changes over time remains uncertain. Here we present new results from three-dimensional lithospheric-scale laboratory experiments of rotational extension that provide key insights into the temporal evolution of propagating rifts. We specifically test and characterize how rifts propagate and interact with linear crustal rheological heterogeneities oriented at variable angles with respect to the extension direction. Results show that approximately rift-parallel pre-existing heterogeneities favor the formation of long, linear faults that reach near-final lengths at early stages. Low angles between the heterogeneities and the propagating rift axis may result in strong strike-slip reactivation of the pre-existing structures if they are suitably oriented with respect to the stretching direction. When the linear heterogeneities are oriented at intermediate to high angles rift branches become laterally offset as they propagate, resulting in complex rhombic fault patterns. Rift-perpendicular crustal heterogeneities do not affect fault trends during rift propagation, but cause stalling and deepening of laterally growing rift basins. Similarities between the analogue experimental results and selected natural examples provide insights on how nature finds the preferential pathway to breakup in heterogeneous continental lithosphere.
APA, Harvard, Vancouver, ISO, and other styles
8

Baluev, A. S., S. Yu Kolodyazhny, and E. N. Terekhov. "Comparative tectonics of the White Sea paleorift system and other continental rifting systems." LITHOSPHERE (Russia) 21, no. 4 (2021): 469–90. http://dx.doi.org/10.24930/1681-9004-2021-21-4-469-490.

Full text
Abstract:
Research subject. The Riphean paleorift system of the White Sea, most of which is overlain by the waters of the White and Barents Seas and the platform cover of the East European Platform. This allowed numerous researchers to classify it as an aulacogen. The system was revealed by geophysical methods in the relief of the crystalline basement of the platform in the form of a frame of deep extended trenches of northwestern strike, subparallel to the edge of the East European platform.Materials and methods. Personal observations of the authors within the Onega-Kandalakcha paleorift, Baikal rift zone; a detailed study of seismostratigraphic sections of these zones; extensive literature data on the structure of modern rift zones. A comparative analysis of the structure of the most studied and currently active Baikal and East African rift systems, as well as the Karoo rift system of the Late Paleozoic origin with the paleorift system of the White Sea.Results. The following types of structural parageneses, which are characteristic of both modern rift systems and ancient paleorift systems, were identified. 1. Genetic relationship (inheritance?) of riftogenic structures with more ancient basement structures. 2. Structural paragenesis of concentric complexes in rift propagation zones. 3. Comparability of the area of horizontal extension of the lithosphere of the White Sea paleorift system with extension zones of modern continental rifts. 4. The fundamental similarity of the structure: the complex of paleorifts of the White Sea with modern continental rift systems: the presence of long deep trough segmentation of grabens and semi-grabens separated by bridges, which were accommodation zones with polarity reversal along the strike of the rift zone, displacement of the rift relative to the mantle ledge, the existence of a gently dipping normal fault (detachment), etc.Conclusion. The riftogenic nature of the aulacogens in the northeastern segment of the East European Platform has been confirmed.
APA, Harvard, Vancouver, ISO, and other styles
9

Merle, Olivier. "A simple continental rift classification." Tectonophysics 513, no. 1-4 (2011): 88–95. http://dx.doi.org/10.1016/j.tecto.2011.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, S., P. M. Davis, H. Liu, et al. "SKSsplitting beneath continental rift zones." Journal of Geophysical Research: Solid Earth 102, B10 (1997): 22781–97. http://dx.doi.org/10.1029/97jb01858.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rift continental"

1

Cornwell, David Graham. "Magma-assisted continental rift margins : the Ethiopian rift." Thesis, University of Leicester, 2007. http://hdl.handle.net/2381/30462.

Full text
Abstract:
Continental rifting and incipient seafloor spreading are observed either side of the main Ethiopian rift (MER). EAGLE (the Ethiopia Afar Geoscientific Lithospheric Experiment) included a 400 km-long profile containing 97 passive seismometers to investigate the change from mechanical to magmatic extension by defining the lithospheric structure and extent of magmatism beneath the rifted northern MER. Changes in crustal structure along the cross-rift profile are imaged using forward modelling, H-kappa stacking and non-linear inversion analyses of receiver functions. The lithospheric structure is inherently different beneath the north-western rift flank, rift valley and south-eastern rift flank, with contrasting crustal thickness and composition, upper mantle velocity and lithospheric anisotropy. Magmatic addition is imaged in the form of an 6--18 km-thick underplate lens at the base of the crust beneath the high Ethiopian plateau and zones of intense dyking and partial melt beneath the rift valley. The underplate layer probably formed synchronous with an Oligocene flood basalt event and therefore pre-dates the rifting by ~20 Myr. A 20--30 km-wide magmatic system pervades the entire crust beneath volcanic chains that mark the locus of current rift extension. To the southeast of the rift, a lithospheric suture is inferred, which was created during the Precambrian collision of East and West Gondwana. Collision-related lithospheric fabric is proposed to be the main source of strong anisotropy observed along the entire profile, which is locally augmented by rift-related magmatism. An active followed by passive magma-assisted rifting model that is controlled by a combination of far-field plate stresses, pre-existing lithospheric framework and magmatism is preferred to explain the evolution of the northern MER.
APA, Harvard, Vancouver, ISO, and other styles
2

Riccomini, Claudio. "O Rift Continental do Sudeste do Brasil." Universidade de São Paulo, 1990. http://www.teses.usp.br/teses/disponiveis/44/44136/tde-18032013-105507/.

Full text
Abstract:
O Rift continental do Sudeste do Brasil (RCSB), de idade cenozóica, é uma feição alongada e deprimida, desenvolvida entre as cidades de Curitiba (PR) e Niterói (RJ), numa extensão de pelo menos 800 km. Segue grosseiramente a linha de costa atual, da qual dista em média cerca de 70 km, alcançando o Atlântico na sua terminação nordeste. O segmento mais contínuo desse rift, entre as cidades de São Paulo (SP) e Volta Redonda (RJ), com cerca de 350 km de comprimento, foi objeto de estudo no presente trabalho, no tocante aos seus aspectos de tectonia e sedimentação. Com base principalmente na análise microestrutural e na análise de fácies sedimentares, amparadas em dados mineralógicos, palinológicos, geocronológicos e geomorfológicos, entre outros, pôde ser estabelecida de forma tentativa, a seguinte seqüência de eventos para a área estudada: a) Paleógeno (Eoceno-Oligoceno): formação da depressão original (hemi-graben), contínua na porção analisada, como resultado do campo de esforços extensionais de direção NNW-SSE imposto pelo basculamento termomecânico na Bacia de Santos; preenchimento vulcano-sedimentar sintectônico (Grupo Taubaté), compreendendo um sistema de leques aluviais associados à planície aluvial de rios entrelaçados (Formação Resende), basal e lateral na bacia, um sistema playa-lake (Formação tremembé), e um sistema fluvial meandrante (Formação São Paulo); eclosão de derrames de basanito a sudeste de Volta Redonda (Basanito Casa de Pedra), associados ao sistema fanglomerático; condições climáticas inicialmente semi-áridas, durante a sedimentação das formações Resende e Tremembé, passando para úmidas durante a deposição da Formação São Paulo; b) Neógeno (Mioceno ?): transcorrência sinistral de direção E-W, com extensão NW-SE e localmente compressão NE-SW; geração de soleiras (Arujá, Queluz, entre outras) relacionadas à transpressão, ou bacias tipo pull-apart (sistema fluvial entrelaçado da Formação Itaquaquecetuba), associadas à transtração ou relaxamento final dos esforços dessa fase; separação das drenagens dos rios Tietê e Paraíba do Sul pela Soleira de Arujá, com mudança do nível de base e erosão na porção central da Bacia de Taubaté; c) Plioceno (?) a Pleistoceno Inferior: implantação de novo sistema fluvial meandrante (Formação Pindamonhangaba), na área da Bacia de Taubaté, em condições provavelmente quentes e úmidas; d) Pleistoceno Superior: inicialmente fase de estabilidade tectônica com a deposição de sedimentos colúvio-aluviais, frutos do remodelamento do relevo em função das variações climáticas; ao final, nova fase transcorrente E-W, agora dextral, com compressão NW-SE e geração de novas soleiras; definição de distribuição atual dos sedimentos nas bacias, ou embaciamentos, num arranjo lazy-Z; e) Holoceno: nova extensão NW (WNW) - SE (ESE), afetando depósitos de baixos terraços ligados à evolução da rede de drenagem do Rio Paraíba do Sul; f) Atual: campo de tensões indicando compressão, sugestivo de nova mudança no regime de esforços. A alternância entre transcorrência sinistral e dextral e, conseqüentemente, de esforços trativos para compreensivos, respectivamente, estaria relacionada provavelmente ao balanço entre as taxas de abertura na Cadeia Meso-Atlântica e de subducção da Placa de Nazca sob a Placa Sul Americana. A deriva desta última para oeste, em relação às estruturas antigas do RCSB, proporcionaria transcorrência dextral quando a taxa de abertura excedesse a de subducção e transcorrência sinistral no caso oposto. O quadro tectono-sedimentar estabelecido apresenta implicações para a geologia econômica e de engenharia da área de estudo, sendo apresentadas breves considerações a esse respeito ao final do trabalho.<br>The Continental Rift of Southeastern BraziI (CRSB), of Cenozoic age, is an elongate, narrow trough more than 800 km long, between the cities of Cutiriba (Paraná State) and Niterói (Rio de Janeiro State). It roughly parallels the present-day coastline, reaching the Atlantic Ocean in the northeast. The segment of the rift located between the cities of São Paulo (S. Paulo State) and Volta Redonda (Rio de Janeiro State) was the objetc of tectonic and sedimentary analysis. As a result of microstructural analysis, and the study of sedimentary facies, supported by mineralogical, palynological, geochronological, geomorphological and other data, it was possible to reconstruct the Tertiary-Quaternary tectonic and sedimentary history of the study area as follows: a) Palaeogene (Eocene-Oligocene): formation of the original depression (half-graben), continuous over the entire study area, as a result of NNW-SSE extension related to thermomechanical tilting of the adjoining offshore Santos Basin; syntectonic volcanism and sedimentation (Taubaté Group) with a basal and marginal alluvial fan/fluvial braided system (Resende Formation), a playa-lake system (Tremembé Formation), and an upper fluvial meandering system (São Paulo Formation); basanite lava flows, southeast of Volta Redonda (Casa de Pedra Basanite), associated with the Resende Formation; paleoclimatic conditions initially semi-arid during the deposition of the Resende and Tremembé Formations, gradually becoming humid during the sedimentation of the São Paulo Formation; b) Neogene (Miocene ?): Ieft-lateral E-W transcurrence, with NW-SE extension and local NE-SW compression; generation of structural highs (Arujá, Queluz and others) related to transpression, and pull-apart basins (fluvial braided system of the Itaquaquecetuba Formation) associated with transtension or final relaxation of the stress of this phase; separation of Tietê and Paraíba do Sul drainage systems by the Arujá Structural High, with changes in base level and consequent erosion in the westcentral part of the Taubaté Basin; c) Pliocene (?) - Early Pleistocene: installation of a new fluvial meandering system (Pindamonhangaba Formation) in the Taubaté Basin, probably under warm and humid paleoclimatic conditions; d) Late Pleistocene: initially tectonic stability with the deposition of colluvium and alluvium related to morphogenetic evolution as a function of climatic changes; at the and of epoch renewed E-W transcurrent phase, now right-lateral, with NW-SE compression; generation of new structural highs; surface distribution of sedimentary deposits in a lazy-Z pattern; e) Holocene: extensional NW (WNW) - SE (ESE) regime affecting low terrace deposits related to the evolution of the Paraíba do Sul drainage system; f) Present-day: compressive stress-field, suggestive of a new change in the stress regime. The alternation from sinistral to dextral transcurrence is probably related to the interplay between the rates of opening along the Middle Atlantic Ridge and subduction of the Nazca Plate beneath the South American Plate. The effect of westward drift of the South American Plate on the NE-trending basement structures of the CRSB has generated dextral transcurrence when the expansion rate in the east has exceeded the subduction rate in the west and sinistral transcurrence in the opposite case. This tectono-sedimentary picture has significant implications for the economic and engineering geology of the study area, especially with respect to neotectonics and mineral exploration.
APA, Harvard, Vancouver, ISO, and other styles
3

Davis, Mark Jonathan. "Lithospheric stretching at rifted continental margins." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Riley, Teal Richard. "Quaternary volcanism of the Rockeskyll Complex, West Eifel, Germany and the carbonatite-nephelinite-phonolite association." Thesis, University of Bristol, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hendrie, Derek Bruce. "Numerical modelling of extension and magmatism in continental rift basins." Thesis, University of Liverpool, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kinabo, Baraka Damas. "Incipient continental rifting: insights from the Okavango Rift Zone, northwestern Botswana." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.mst.edu/thesis/kinabo_09007dcc.8048de9a.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri--Rolla, 2007.<br>Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 4, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Allemand, Pascal. "Approche expérimentale de la mécanique du rifting continental." Phd thesis, Université Rennes 1, 1988. http://tel.archives-ouvertes.fr/tel-00594518.

Full text
Abstract:
Les rifts continentaux sont des zones étroites et allongées d'extension de la lithosphère. Une étude du champ de déformation en surface montre leur carractère asymétrique quasi-systématique. Cette asymétrie est acquise tardivemen t au cours de la déformation. La lithosphère étant considérée comme un multicouche fragile/d uctile, une modélisation analogique de sa striction est réalisée en appliquant une extension ponctuelle sur des multicouches sable/silicone dimensionnés. Ces expériences montrent que: -l'asymétrie est due à la présence d'un cisaillement ductile à la ba se des rifts qui accommode un décalage entre les déformations de la croûte fra gile et du manteau supérieur -la déformation est contrôlée par la couche la plus résistante de la lithosphère (manteau supérieur) -la déformation du manteau supérieur est conditionnée par des hétérogénéités internes préexistantes (anciennes structures) -la largeur initiale des rifts est fonction de la profondeur de l'interface fragile/ductile dans la croûte ou dans le manteau -la largeur d'une zone active étirée dépend du couplage entre la coûte fragile et la croûte ductile. Ces conclusions sont appliquées au rift oligocène ouest européen et permettent d'expliquer la variation du champ de déformation d'un segment du rift à l'autre. ,
APA, Harvard, Vancouver, ISO, and other styles
8

Couzens, Timothy John. "The rift to drift transition and sequence stratigraphy at passive continental margins." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333509.

Full text
Abstract:
Most passive margins display a prominent breakup unconformity coinciding with the rift to drift transition. The unconformity, as defined by Falvey, (1974) is of broad regional extent affecting both basins and highs and is easily recognised on seismic sections. Criteria for the recognition of the breakup unconformity include an inflection in the subsidence curve, fault terminations and volcanic strata (and/or evaporites) at the level of the unconformity. Falvey considered that it was caused by "erosion during the final uplift pulse associated with pre-breakup upwelling in the mantle". It is more likely that the uplift is caused by magmatic underplating in response to the passive upwelling of the mantle and the flexural isostatic effects of erosion throughout the syn-rift phase. The primary objective has been to quantify the amount of uplift and erosion associated with the breakup unconformity / breakup megasequence boundary. This is of particular importance in hydrocarbon exploration as it quantifies the potential loss of old reservoirs and predicts the provenance of new reservoir clastics. Two data sets, from the Grand Banks and the Northwest Shelf of Australia, have been studied. In both cases there are multiple breakup events and breakup megasequence boundaries form part of a complex tectono-stratigraphy. Regional seismic lines have been interpreted, depth converted and modelled using a new technique of combined reverse post-rift and forward syn-rift modelling. The results of this process, together with seismic megasequence analysis, show that the morphology of the breakup megasequence boundary varies systematically across a passive margin. It is strongly erosional at about 70 km landward of the continentocean boundary, where regional "breakup" uplift outweighs extensionally controlled subsidence, but may be depositional on either side of this zone. A coupled, quantitative magmatic-tectonic model has been constructed by combining the Bickle-McKenzie melt generation model with the flexural cantilever model for continental extension. The magnitude of underplating can be estimated using the Bickle-McKenzie model, in which the amount of melt produced is controlled by the extension factor, ß, and the proximity of a mantle plume convection cell.
APA, Harvard, Vancouver, ISO, and other styles
9

Plasman, Matthieu. "Rupture lithosphérique continentale dans le rift Africain : apport de l'inversion conjointe." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0029/document.

Full text
Abstract:
L'inversion conjointe géophysique est la méthode la plus efficace pour imager l'intérieur de la Terre. En intégrant plusieurs techniques géophysiques elle permet de réduire les incertitudes inhérentes à chacune et ainsi améliorer la compréhension de la Terre. Dans cette étude, nous utilisons les techniques des fonctions récepteur (RF) en sismologie, de la magnétotellurique (MT) et de la gravimétrie qui permettent de caractériser respectivement la vitesse des ondes S, la résistivité électrique et la densité du sous-sol.Le but de ce travail de recherche se divise en deux parties: une première, méthodologique, sur le développement d'une nouvelle approche d'inversion conjointe en 3D et une deuxième avec l'application de ces techniques (en approche jointe ou séparée) sur la Divergence Nord Tanzanienne pour mieux comprendre le phénomène de rupture continentale. Pour la partie méthodologie deux approches ont été développées : une entre les données de MT et de gravimétrie avec un calcul original de l'effet gravimétrique de la topographie qui permet de réduire le nombre de mailles tout en gardant une résolution satisfaisante ; et une deuxième méthode entre les données de MT et de RF par une nouvelle approche d'extrapolation des modèles 1D de vitesse en pseudo modèle 3D de vitesse. L'application de ces techniques sur la Tanzanie a permis de mettre en évidence un certain nombre de structures lithosphériques dont deux zones majeures à faible vitesse dans la croûte inférieure et dans le manteau supérieur. Cette dernière semble refléter des interactions entre des structures héritées d'âge protérozoïque et le panache mantellique Africain<br>Geophysical joint inversion attempts to reproduce as best as possible the interior of the Earth. By integrating several geophysical techniques the joint inversion reduces the uncertainties of each methods and improves our understanding of the Earth structure. In this study we use the receiver functions (RF), the magnetotelluric (MT) and the gravity methods which enable to charaterize the Swave velocity, the electrical resistivity and the density, respectively. The objective of this research work is divided in two parts; first with the development of a new 3D joint inversion approach and then with the application of these methods (on a joint or separate approach) on the North Tanzanian Divergence to better understand the continental breakup.For the methodologic part two approaches have been developed; one between the MT and gravity data with an original computation of the topographic effect which decreases the number of cells while keeping a satisfaying resolution. And a second method between the MT and RF data where pseudo 3D velocity model are created and combined with the MT models to better takes into account the physical properties of the receiver function. The application of these methods on the Tanzania highlighted several lithospheric structures and particularly two low-velocity areas in the lower crust and the upper mantle. This latter suggests interactions with Proterozoic inherited structures and the African plume material
APA, Harvard, Vancouver, ISO, and other styles
10

Albaric, Julie. "Relations entre déformation active, rhéologie et magmatisme dans un rift continental : Etude sismologique de la Divergence Nord-Tanzanienne, Rift Est-Africain." Phd thesis, Université de Bretagne occidentale - Brest, 2009. http://tel.archives-ouvertes.fr/tel-00495984.

Full text
Abstract:
Les rifts continentaux résultent de l'action de contraintes extensives dont la magnitude est suffisante pour déformer un continent (forces aux limites des plaques, mouvements asthénosphériques). Cette déformation, contrôlée notamment par la rhéologie ou encore l'héritage structural lithosphérique, se réalise par des processus magmatiques (“dyking”) et tectoniques (rupture sur faille et étirement ductile) dont l'importance relative est mal connue et variable d'un segment de rift à l'autre. Afin de mieux comprendre comment ces différents facteurs et processus interagissent, la Divergence Nord-Tanzanienne (DNT) apparaît comme une cible privilégiée du Rift Est-Africain : elle représente un stade précoce du rift et montre une transition abrupte dans le style morphotectonique et l'expression du volcanisme. Cette étude a consisté à déployer un réseau sismologique local dans la DNT et à exploiter les données issues de l'enregistrement continu de l'activité sismique pendant 6 mois (campagne SEISMO-TANZ 2007). Les signaux des séismes proches et lointains sont utilisés comme indicateurs de la sismogénèse, de la résistance crustale, des champs de déformation et de contraintes, et renseignent aussi sur la structure et la fabrique (anisotropie) lithosphérique. La sismicité est essentiellement localisée dans la branche centrale de la DNT, au sud des lacs Natron (sud du volcan Gelaï) et Manyara. La crise sismique observée à Gelaï illustre la co-existence de processus magmatiques et tectoniques, avec la mise en place d'un dyke et le comportement à la fois asismique (glissement lent) et sismique (séisme de magnitude Mw 5.9) de failles normales. Les structures géologiques mises en jeu dans cette crise sont orientées NE-SW, obliques à l'axe ~N-S du rift dans la zone. Cette direction est parallèle à la fabrique tectonique antérieure qui est ré-empruntée par le rift Cénozoïque (faille Eyasi). A Manyara, les séismes sont remarquablement profonds (~20-35 km) et révèlent un décrochement sénestre sur un plan NE-SW. Ils illustrent le développement du rift vers le sud/sud-ouest sur la branche centrale Natron-Manyara-Balangida, au contact du craton tanzanien en profondeur. La contrainte principale minimum calculée dans la zone est orientée WNW-ESE et le régime tectonique local associé est transtensif. Il est fort probable que des fluides soient associés au déclenchement de cette séquence sismique profonde et de longue durée. L'influence de l'héritage structural dans l'expression des processus magmatique et tectonique accommodant la déformation s'observe aussi à l'échelle lithosphérique, par le biais de l'anisotropie sismique. Nos résultats soulignent 3 points majeurs: (1) les structures lithosphériques héritées (contrastes rhéologiques, fabriques crustale et mantellique) exercent un contrôle majeur sur la localisation et l'expression précoce du rifting continental; (2) la distribution des séismes en profondeur apparaît être un bon révélateur des propriétés rhéologiques de la croûte (transition fragile-ductile); et (3) dès le stade du rift immature (où la croûte est peu étirée), les processus magmatiques semblent jouer un rôle prépondérant dans l'accommodation de la déformation, en étroite interaction avec les processus tectoniques.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rift continental"

1

Razvali︠a︡ev, A. V. Continental rift formation and its prehistory. A.A. Balkema, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

400, Geodynamics of Continental Rifting Meeting and Field Excursion Project IGCP. Rifting in intracontinental setting, Baikal Rift System and other continental rifts: Third Annual Meeting and Field Excursion : Irkutsk and Lake Baikal, Russia, 22-30 August 1999 : abstract book. [Twin], 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohriak, Webster, and Manik Taiwani, eds. Atlantic Rifts and Continental Margins. American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Misra, Achyuta Ayan, and Soumyajit Mukherjee. Tectonic Inheritance in Continental Rifts and Passive Margins. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20576-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allemand, P. Approche expérimentale de la mécanique du rifting continental. Centre armoricain d'étude structurale des socles, Université de Rennes I, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

E, Banda, Torné M, Talwani M, and NATO Scientific Affairs Division, eds. Rifted ocean-continent boundaries. Kluwer Academic, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

From continental extension to collision: Africa-Europe interaction, the Dead Sea and analogue natural laboratories. Copernicus, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International, Symposium on Deep Internal Processes and Continental Rifting (1985 Chengdu China). International Symposium on Deep Internal Processes and Continental Rifting (DIPCR): Abstracts, Sept. 9-13, 1985, Chengdu, China. China Academic Publishers, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

IGCP 400 Meeting (1st 1997 Dublin Institute of Advanced Studies). Lithospheric structure, evolution and sedimentation in continental rifts: Proceedings of the IGCP 400 Meeting, Dublin, 20-22 March, 1997. Edited by Delvaux Damien, Jacob A. W. Brian, Khan M. Aftab, Dublin Institute for Advanced Studies., and International Geological Correlation Programme. Project 400 . Dublin Institute for Advanced Studies, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cochrane, Ryan. U-Pb thermochronology, geochronology and geochemistry of NW South America: Rift to drift transition, active margin dynamics and implications for the volume balance of continents. Département de Minéralogie, Université de Genève, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rift continental"

1

Wilson, Marjorie. "Continental rift zone magmatism." In Igneous Petrogenesis. Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-94-010-9388-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pirajno, Franco. "Hydrothermal Mineral Deposits of Continental Rift Environments." In Hydrothermal Mineral Deposits. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-75671-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ebinger, Cynthia, and Christopher A. Scholz. "Continental Rift Basins: The East African Perspective." In Tectonics of Sedimentary Basins. John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781444347166.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Misra, Achyuta Ayan, and Soumyajit Mukherjee. "Role of Lithosphere Rheology on Rift Architecture." In Tectonic Inheritance in Continental Rifts and Passive Margins. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20576-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiracek, George R., Mark E. Ander, and H. Truman Holcombe. "Magnetotelluric Soundings of Crustal Conductive Zones in Major Continental Rifts." In Rio Grande Rift: Tectonics and Magmatism. American Geophysical Union, 2013. http://dx.doi.org/10.1029/sp014p0209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohriak, Webster U., Marcelo Bassetto, and Ines S. Vieira. "Tectonic Evolution of the Rift Basins in the Northeastern Brazilian Region." In Atlantic Rifts and Continental Margins. American Geophysical Union, 2000. http://dx.doi.org/10.1029/gm115p0293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kafri, Uri, and Yoseph Yechieli. "The Eastern Dead Sea Rift Continental Groundwater Base Level." In Springer Hydrogeology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51148-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hase, Yoshitaka, Sergey K. Krivonogov, and Akiko Iwauchi. "Geomorphological Development of the Tunka Depression in the Baikal Rift Zone in Siberia, Russia." In Long Continental Records from Lake Baikal. Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-67859-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Zhengwen. "Shallow structure of the southern Albuquerque Basin (Rio Grande rift), New Mexico from COCORP seismic reflection data." In Reflection Seismology: The Continental Crust. American Geophysical Union, 1986. http://dx.doi.org/10.1029/gd014p0293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gordon, Andres, Nivaldo Destro, and Monica Heilbron. "The Recôncavo-Tucano-Jatobá Rift and Associated Atlantic Continental Margin Basins." In São Francisco Craton, Eastern Brazil. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-01715-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rift continental"

1

Keller, G. Randy, Seth A. Stein, Carol A. Stein, and Reece P. Elling. "PRECAMBRIAN RIFT SYSTEMS IN NORTH AMERICA COMPARED TO OTHER CONTINENTAL RIFTS AROUND THE WORLD." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-318583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahoney, J. B., Paul Link, and David Pearson. "THE INFLUENCE OF RIFT GEOMETRY ON CONTINENTAL SEDIMENT DISPERSAL PATTERNS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-288012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scholz, Christopher A. "Advancing Models of Facies Variability and Lacustrine Source Rock Accumulation in Rifts: Implications for Exploration." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2577056-ms.

Full text
Abstract:
ABSTRACT Important syn-rift hydrocarbon discoveries in the Tertiary East African Rift and in the South Atlantic subsalt basins have in recent years promoted renewed interest in the variability of source and reservoir rock facies in continental rifts. This talk considers several important new observations and developments in our understanding of the sedimentary evolution of lacustrine rift basins. Offshore subsalt basins in the South Atlantic demonstrate the importance of lacustrine carbonates, and especially microbialites, as reservoir facies in extensional systems. The role of rift-related magmatism is significant in these basins, both as drivers of hydrothermal systems around and within rift lakes, and as a source of solutes that facilitate carbonate accumulations. In the Tertiary East African Rift, substantial new hydrocarbon resources have been identified, including onshore siliciclastic reservoirs in remarkably young and shallow parts of the sedimentary section in the Albertine Graben. Rollover anticlines and fault-related folds serve as important structures for several new fields in the East African Rift, but larger structures affiliated with accommodation zones, in many instances located far offshore in the modern lakes, remain untested. Lacustrine source rocks that accumulated in stratified lake basins are the source of the oil and gas in these systems, however there is still much to be learned about their spatial and temporal variability. There is observed considerable variation in the character of organic matter on the floors of modern African lake basins, even adjacent ones. A number of factors likely govern the amount of total organic carbon preserved within the basins. These include 1) primary productivity; 2) degree of siliciclastic dilution, which is controlled in part by offshore slopes and the extent of onshore catchments, and 3) physical limnology, controlled by climate and basin-scale physiography, and the fetch-depth ratio of the lakes, which determines the likelihood of water column stratification. Scientific drilling in the African Rift lake basins is providing considerable information on the high temporal hydroclimate variability of the region, especially in the later Tertiary and Quaternary, which substantially controls basin lithofacies.
APA, Harvard, Vancouver, ISO, and other styles
4

Ojo, Oyewande O., and Daniel A. Laó-Dávila. "BORDER FAULT SEGMENTATION AND LINKAGE AT THE PROPAGATING TIPS OF CONTINENTAL RIFTS: INSIGHTS FROM SOUTH MALAWI RIFT." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-357037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haley, Maureen Y., Claire McLeod, RJ Brydon, Amy Wolfe, Barry Shaulis, and Reidar Tronnes. "CONSTRUCTING CONTINENTAL CRUST: TRACKING PETROGENESIS OF GRANITIC BATHOLITHS OF THE OSLO RIFT, NORWAY." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-298989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Romu, Ilona, Perttu Mikkola, Perttu Mikkola, et al. "CASE ISLAND OF SOISALO, EASTERN FINLAND: FROM RIFT RELATED VOLCANISM TO SILICICLASTIC CONTINENTAL MARGIN." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-357884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Almaz, Moamen, and Kevin L. Mickus. "LITHOSPHERIC EVALUATION OF THE MID-CONTINENTAL RIFT SYSTEM IN IOWA USING GRAVITY AND MAGNETIC ANALYSIS." In Joint 52nd Northeastern Annual Section and 51st North-Central Annual GSA Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017ne-290138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abdelsalam, Mohamed G., Estella A. Atekwana, Rob L. Evans, and Kevin L. Mickus. "THE TRI-TECTONIC DANCE OF SOUTH-CENTRAL AFRICA: CRATONS, OROGENIC BELTS, AND CONTINENTAL RIFT SYSTEMS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Granath, James, and William Dickson. "Regionally Connected Structural Systems: The Power of the Big (Continental-Scale) Picture." In SPE/AAPG Africa Energy and Technology Conference. SPE, 2016. http://dx.doi.org/10.2118/afrc-2571578-ms.

Full text
Abstract:
ABSTRACT Beyond offshore West Africa where modern densely-sampled data from ships and satellites have played a key role in current understanding of passive margin evolution, Africa is in general rather unevenly known, especially in the subsurface in more remote areas. The GIS-based Exploration Fabric of Africa (EFA, the &amp;lsquo;Purdy project&amp;rsquo;) was designed to address that problem. It includes structural features such as faults and basin outlines but at a very high and often generalized level, divorced from their underlying genetic linkages. We have undertaken to compile a more detailed tectonic synthesis aimed to integrate understanding of the oceanic margins with the continental realm. This is an overlay to EFA with a variety of public domain, published, non-exclusive, and derivatives of proprietary work at a closer and more detailed level, importantly guided by known patterns of structural styles. Potential field (gravity and magnetic) data provide guidance in locating, extending, and connecting key mapped features; we then rely on the kinematic patterns to predict missing details in a testable interpretation. The result is a detailed structural features map that can function as a framework within which to target and prioritize both conventional and unconventional activity by operators and licensing/regulatory organizations. We illustrate the process in theory and in practice along the Central African Rift System (CARS), where data is sparse. This fault linkage systems approach has flagged underexplored areas where unmapped structure is likely that could, for example, be targeted with hi-resolution geophysical data. A similar system to CARS appears to cross southern Africa from Namibia to Tanzania – a &amp;ldquo;Southern Trans-African Rift system&amp;quot; or STARS. Exploration in the eastern Owambo Basin resulted in the mapping of a pull-apart basin from depth-to-basement inversion of high-resolution magnetic data and subsequently studied with structural modeling. Thinking in terms of such fault and structural systems, this &amp;lsquo;Kavango Basin&amp;rsquo; can be related along strike to the Karoo Basins in Eastern Africa via features such as the Omaruru lineament, implying the possibility of a fairway of extensional basins and shears across the continent that are not obvious in existing low-resolution data. STARS represents a blue-sky frontier concept for both conventional and nonconventional exploration potentially offering new exploration leads, the ultimate objective of big picture work.
APA, Harvard, Vancouver, ISO, and other styles
10

D. Leroy, S., and Wm D. Brumbaugh. "The Northern Gulf of Mexico & Central West Africa: rift-fabric control of continental "feather edges." In 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410650.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rift continental"

1

Bleeker, W., D. A. Liikane, J. Smith, et al. Controls on the localization and timing of mineralized intrusions in intra-continental rift systems, with a specific focus on the ca. 1.1 Ga Mid-Continent Rift system. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2018. http://dx.doi.org/10.4095/306594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCartney, T. A qualitative comparison of continental rift structures in the sedimentary basins of the Labrador Shelf, offshore Newfoundland and Labrador, and the Malawi Rift, east Africa. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2019. http://dx.doi.org/10.4095/315352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography