Academic literature on the topic 'Rigged Hilbert Spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rigged Hilbert Spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rigged Hilbert Spaces"

1

Bellomonte, Giorgia, and Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces." Monatshefte für Mathematik 164, no. 3 (2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Celeghini, E., M. Gadella, and M. A. del Olmo. "Spherical harmonics and rigged Hilbert spaces." Journal of Mathematical Physics 59, no. 5 (2018): 053502. http://dx.doi.org/10.1063/1.5026740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Celeghini, Enrico, Manuel Gadella, and Mariano A. del Olmo. "Groups, Special Functions and Rigged Hilbert Spaces." Axioms 8, no. 3 (2019): 89. http://dx.doi.org/10.3390/axioms8030089.

Full text
Abstract:
We show that Lie groups and their respective algebras, special functions and rigged Hilbert spaces are complementary concepts that coexist together in a common framework and that they are aspects of the same mathematical reality. Special functions serve as bases for infinite dimensional Hilbert spaces supporting linear unitary irreducible representations of a given Lie group. These representations are explicitly given by operators on the Hilbert space H and the generators of the Lie algebra are represented by unbounded self-adjoint operators. The action of these operators on elements of contin
APA, Harvard, Vancouver, ISO, and other styles
4

Suchanecki, Z., I. Antoniou, S. Tasaki, and O. F. Bandtlow. "Rigged Hilbert spaces for chaotic dynamical systems." Journal of Mathematical Physics 37, no. 11 (1996): 5837–47. http://dx.doi.org/10.1063/1.531703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Celeghini, E., M. Gadella, and M. A. del Olmo. "Groups, Jacobi functions, and rigged Hilbert spaces." Journal of Mathematical Physics 61, no. 3 (2020): 033508. http://dx.doi.org/10.1063/1.5138238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Celeghini, Enrico. "A constructive presentation of rigged Hilbert spaces." Journal of Physics: Conference Series 626 (July 3, 2015): 012047. http://dx.doi.org/10.1088/1742-6596/626/1/012047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bellomonte, Giorgia, and Camillo Trapani. "Riesz-Like Bases in Rigged Hilbert Spaces." Zeitschrift für Analysis und ihre Anwendungen 35, no. 3 (2016): 243–65. http://dx.doi.org/10.4171/zaa/1564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Celeghini, E., M. Gadella, and M. A. del Olmo. "Zernike functions, rigged Hilbert spaces, and potential applications." Journal of Mathematical Physics 60, no. 8 (2019): 083508. http://dx.doi.org/10.1063/1.5093488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trapani, Camillo, and Francesco Tschinke. "Partial Multiplication of Operators in Rigged Hilbert Spaces." Integral Equations and Operator Theory 51, no. 4 (2005): 583–600. http://dx.doi.org/10.1007/s00020-002-1263-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Meishan. "Dynamical resonances and lifetimes in rigged Hilbert spaces." Physics Letters A 204, no. 5-6 (1995): 319–22. http://dx.doi.org/10.1016/0375-9601(95)00510-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rigged Hilbert Spaces"

1

Wickramasekara, Sujeewa, and sujeewa@physics utexas edu. "Symmetry Representations in the Rigged Hilbert Space Formulation of." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi993.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wickramasekara, Sujeewa. "Differentiable representations of finite dimensional lie groups in rigged Hilbert spaces /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wickramasekara, Sujeewa, and sujeewa@physics utexas edu. "On the Representations of Lie Groups and Lie Algebras in Rigged Hilbert." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi994.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patuleanu, Paul. "The rigged Hilbert space formulation of quantum mechanics and decay processes of higher-order resonances /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Püntmann, Christoph Herrmann Theodor. "The rigged Hilbert space formalism in quantum mechanics with applications to higher-order pole resonances and to potential barriers /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rigged Hilbert Spaces"

1

Bohm, Arno, Heinz-Dietrich Doebner, and Piotr Kielanowski, eds. Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0106772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Böhm, Arno. Dirac Kets, Gamow Vectors, and Gel'fand triplets: The rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin. Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bohm, Arno. Dirac Kets, Gamow Vectors, and Gel'fand triplets: The rigged Hilbert space formulation of quantum mechanics : lectures in mathematical physics at the University of Texas at Austin. Springer-Verlag, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

International Colloquium on Group Theoretical Methods in Physics (21st 1996 Goslar, Germany). Irreversibility and causality: Semigroups and rigged Hilbert space : a selection of articles presented at the 21st International Colloquium on Group Theoretical Methods in Physics (ICGTMP) at Goslar, Germany, July 16-21, 1996. Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bohm, Arno, Piotr Kielanowski, and Heinz-Dietrich Doebner. Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces. Springer Berlin / Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), Arno Bohm, Heinz-Dietrich Doebner (Editor), and Piotr Kielanowski (Editor), eds. Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces (Lecture Notes in Physics). Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bohm, A., and M. Gadella. Dirac Kets, Gamow Vectors and Gel'Fand Triplets: The Rigged Hilbert Space Formulation of Quantum Mechanics (Lecture Notes in Physics, Vol 348). Springer, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dollard, J. D., Arno Bohm, and Manuel Gadella. Dirac Kets, Gamow Vectors and Gel’fand Triplets: The Rigged Hilbert Space Formulation of Quantum Mechanics. Lectures in Mathematical Physics at the ... at Austin. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rigged Hilbert Spaces"

1

Koshmanenko, Volodymyr, and Mykola Dudkin. "Rigged Hilbert Spaces." In The Method of Rigged Spaces in Singular Perturbation Theory of Self-Adjoint Operators. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29535-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arlinskii, Yuri, Sergey Belyi, and Eduard Tsekanovskii. "Geometry of Rigged Hilbert Spaces." In Conservative Realizations of Herglotz-Nevanlinna Functions. Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-7643-9996-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Antoine, Jean-Pierre, Robert C. Bishop, Arno Bohm, and Sujeev Wickramasekara. "Rigged Hilbert Spaces in Quantum Physics." In Compendium of Quantum Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blanchard, Philippe, and Erwin Brüning. "Spectral Analysis in Rigged Hilbert Spaces." In Mathematical Methods in Physics. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14045-2_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Antoniou, Ioannis E., and Manolo Gadell. "Irreversibility, Resonances and Rigged Hilbert Spaces." In Irreversible Quantum Dynamics. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44874-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bollini, C. G., O. Civitarese, A. L. De Paoli, and M. C. Rocca. "Gamow states in a rigged hilbert space." In Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0106774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bohm, Arno, and Nathan Harshman. "Rigged Hilbert Spaces and Time Asymmetric Quantum Theory." In Compendium of Quantum Physics. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Antoine, Jean-Pierre, Atsushi Inoue, and Camillo Trapani. "Quasi *-Algebras of Operators in Rigged Hilbert Spaces." In Partial *-Algebras and Their Operator Realizations. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0065-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmüdgen, Konrad. "Representations on Rigged Spaces and Hilbert $$C^*$$-Modules." In Graduate Texts in Mathematics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46366-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Antoniou, I., K. Gustafson, and Z. Suchanecki. "From stochastic semigroups to chaotic dynamics." In Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0106779.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rigged Hilbert Spaces"

1

Heredia-Juesas, J., E. Gago-Ribas, and P. Vidal-Garcia. "Application of the Rigged Hilbert Spaces into the Generalized Signals & Systems Theory." In 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2015. http://dx.doi.org/10.1109/iceaa.2015.7297341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heredia-Juesas, J., E. Gago-Ribas, and P. Vidal-Garcia. "Application of the Rigged Hilbert Spaces into the Generalized Signals and Systems Theory: Practical example." In 2016 Progress in Electromagnetic Research Symposium (PIERS). IEEE, 2016. http://dx.doi.org/10.1109/piers.2016.7735737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Castagnino, Mario A. "Rigged Hilbert space, duality, and cosmology." In First Latin American symposium on high energy physics and The VII Mexican School of Particles and Fields. AIP, 1997. http://dx.doi.org/10.1063/1.53249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de la Madrid, Rafael. "Description of Resonances within the Rigged Hilbert Space." In ADVANCED SUMMER SCHOOL IN PHYSICS 2006: Frontiers in Contemporary Physics: EAV06. AIP, 2007. http://dx.doi.org/10.1063/1.2563170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Xuelong, Jian Yang, and Qi Wang. "Nonrigid Points Alignment with Soft-weighted Selection." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/111.

Full text
Abstract:
Point set registration (PSR) is a crucial problem in computer vision and pattern recognition. Existing PSR methods cannot align point sets robustly due to degradations, such as deformation, noise, occlusion, outlier, and multi-view changes. In this paper, we present a self-selected regularized Gaussian fields criterion for nonrigid point matching. Unlike most existing methods, we formulate the registration problem as a sparse approximation task with low rank constraint in reproducing kernel Hilbert space (RKHS). A self-selected mechanism is used to dynamically assign real-valued label for each
APA, Harvard, Vancouver, ISO, and other styles
6

Aboubakr, Ahmed, and Ahmed A. Shabana. "Efficient and Robust Implementation of the TLISMNI Method." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-48105.

Full text
Abstract:
The dynamics of large scale and complex multibody systems (MBS) that include flexible bodies and contact/impact pairs is governed by stiff equations. Because explicit integration methods can be very inefficient and often fail in the case of stiff problems, the use of implicit numerical integration methods is recommended in this case. This paper presents a new and efficient implementation of the two-loop implicit sparse matrix numerical integration (TLISMNI) method proposed for the solution of constrained rigid and flexible MBS differential and algebraic equations. The TLISMNI method has desira
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!