Academic literature on the topic 'Rigidité du substrat'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rigidité du substrat.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rigidité du substrat"

1

Banerjee, S., and M. C. Marchetti. "Substrate rigidity deforms and polarizes active gels." EPL (Europhysics Letters) 96, no. 2 (2011): 28003. http://dx.doi.org/10.1209/0295-5075/96/28003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

York, B. R., S. A. Solin, N. Wada, Rasik H. Raythatha, Ivy D. Johnson, and Thomas J. Pinnavaia. "Substrate rigidity effects in mixed layered solids." Solid State Communications 54, no. 6 (1985): 475–78. http://dx.doi.org/10.1016/0038-1098(85)90650-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lovett, David B., Nandini Shekhar, Jeffrey A. Nickerson, Kyle J. Roux, and Tanmay P. Lele. "Modulation of Nuclear Shape by Substrate Rigidity." Cellular and Molecular Bioengineering 6, no. 2 (2013): 230–38. http://dx.doi.org/10.1007/s12195-013-0270-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roberts, M. W., C. B. Clemons, J. P. Wilber, G. W. Young, A. Buldum, and D. D. Quinn. "Continuum Plate Theory and Atomistic Modeling to Find the Flexural Rigidity of a Graphene Sheet Interacting with a Substrate." Journal of Nanotechnology 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/868492.

Full text
Abstract:
Using a combination of continuum modeling, atomistic simulations, and numerical optimization, we estimate the flexural rigidity of a graphene sheet. We consider a rectangular sheet that is initially parallel to a rigid substrate. The sheet interacts with the substrate by van der Waals forces and deflects in response to loading on a pair of opposite edges. To estimate the flexural rigidity, we model the graphene sheet as a continuum and numerically solve an appropriate differential equation for the transverse deflection. This solution depends on the flexural rigidity. We then use an optimizatio
APA, Harvard, Vancouver, ISO, and other styles
5

Doss, Bryant L., Meng Pan, Mukund Gupta, et al. "Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress." Proceedings of the National Academy of Sciences 117, no. 23 (2020): 12817–25. http://dx.doi.org/10.1073/pnas.1917555117.

Full text
Abstract:
Morphogenesis, tumor formation, and wound healing are regulated by tissue rigidity. Focal adhesion behavior is locally regulated by stiffness; however, how cells globally adapt, detect, and respond to rigidity remains unknown. Here, we studied the interplay between the rheological properties of the cytoskeleton and matrix rigidity. We seeded fibroblasts onto flexible microfabricated pillar arrays with varying stiffness and simultaneously measured the cytoskeleton organization, traction forces, and cell-rigidity responses at both the adhesion and cell scale. Cells adopted a rigidity-dependent p
APA, Harvard, Vancouver, ISO, and other styles
6

Ni, Yong, and Martin Y. M. Chiang. "Cell morphology and migration linked to substrate rigidity." Soft Matter 3, no. 10 (2007): 1285. http://dx.doi.org/10.1039/b703376a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, ZQ, ZL Dan, and J. Wu. "A Simple Solution to the Cylindrical Indentation of an Elastic Compressible Thin Layer Resting on a Rigid Substrate." Journal of Physics: Conference Series 2095, no. 1 (2021): 012094. http://dx.doi.org/10.1088/1742-6596/2095/1/012094.

Full text
Abstract:
Abstract In this paper, an analytical model is presented to study the contact that recedes between an elastic thin film that could be compressed and a substrate of rigidity. The surface of rigidity was formed due to cylindrical indentation. The substrate was assumed to be a rough surface without any friction. Further, the contact width of the substrate was derived, and the relationship between the compression force, compression depth, and the compression width was determined using the energy method. Finally, the obtained results were validated using finite element analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Hong-Bei, Micah Dembo, and Yu-Li Wang. "Substrate flexibility regulates growth and apoptosis of normal but not transformed cells." American Journal of Physiology-Cell Physiology 279, no. 5 (2000): C1345—C1350. http://dx.doi.org/10.1152/ajpcell.2000.279.5.c1345.

Full text
Abstract:
One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H- ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. The
APA, Harvard, Vancouver, ISO, and other styles
9

Boccafoschi, Francesca, Marco Rasponi, Cecilia Mosca, Erica Bocchi, and Simone Vesentini. "Study of Cellular Adhesion by Means of Micropillar Surface Topologies." Advanced Materials Research 409 (November 2011): 105–10. http://dx.doi.org/10.4028/www.scientific.net/amr.409.105.

Full text
Abstract:
It is well-known that cellular behavior can be guided by chemical signals and physical interactions at the cell-substrate interface. The patterns that cells encounter in their natural environment include nanometer-to-micrometer-sized topographies comprising extracellular matrix, proteins, and adjacent cells. Whether cells transduce substrate rigidity at the microscopic scale (for example, sensing the rigidity between adhesion sites) or the nanoscopic scale remains an open question. Here we report that micromolded elastomeric micropost arrays can decouple substrate rigidity from adhesive and su
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Wei-hui, Margo T. Frey, Nancy A. Burnham, and Yu-li Wang. "Substrate Rigidity Regulates the Formation and Maintenance of Tissues." Biophysical Journal 90, no. 6 (2006): 2213–20. http://dx.doi.org/10.1529/biophysj.105.070144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Rigidité du substrat"

1

Ehlinger, Claire. "Influence de la rigidité du substrat sur la migration des cellules souches de la pulpe dentaire." Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAE001.

Full text
Abstract:
La migration des cellules souches de la pulpe dentaire (DPSCs) est un aspect fondamental de l’ingénierie tissulaire dentaire. L’objectif de cette thèse est de déterminer l’influence de la rigidité du substrat sur la migration des DPSCs. Dans une première partie, nous avons montré que les DPSCs sont capables de survivre et de proliférer sur des substrats de polydiméthylsiloxane (PDMS) avec un module de Young de 1,5 kPa à 2,5 MPa sans se différencier. Nous avons observé que la vitesse moyenne des DPSCs est augmentée sur les substrats de faible rigidité. De plus, la Yes-associated protein (YAP) c
APA, Harvard, Vancouver, ISO, and other styles
2

Flick, Florence. "La plasticité de la chromatine oriente le destin des cellules saines et des cellules cancéreuses sur des matrices de faibles rigidités." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE020/document.

Full text
Abstract:
L’objectif de cette thèse est d'étudier l'influence d'hydrogels de faibles rigidité sur l’organisation de la chromatine de cellules épithéliales PtK2 et cancéreuses SW480. Sur des hydrogels mous, la chromatine de PtK2 se structure en hétérochromatine. Les hydrogels très mous conduisent à la nécrose. Sur ces substrats, l'euchromatine, maintenue par inhibition de HDAC, guide la cellule en quiescence. Ces cellules se divisent après transfert sur surfaces rigides. Un processus de dissémination métastatique est développé en cultivant des cellules cancéreuses sur des hydrogels très mous (E20) et des
APA, Harvard, Vancouver, ISO, and other styles
3

Dutour, Provenzano Gaëlle. "Role of intermediate filaments in mechanotransduction." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS364.

Full text
Abstract:
Les cellules s'adaptent en permanence à leur microenvironnement. En particulier, elles modifient leur morphologie, leur croissance, leur division et leur motilité en fonction des propriétés biochimiques et physiques de la matrice extracellulaire (MEC). Elles sont équipées de structures adhésives appelées plaques d’adhérences, permettant aux cellules d'interagir avec les protéines de la MEC via les protéines transmembranaires appelées intégrines et de détecter la nature et la rigidité de la MEC. Le signal est transduit par les protéines des plaques d’adhérences et résulte par exemple en une mod
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Guan. "Roles of substrate rigidity and composition in membrane trafficking." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC195.

Full text
Abstract:
Du cerveau à l’os, la rigidité et la composition de la matrice extracellulaire varient énormément et jouent un rôle dans les réponses cellulaires. La rigidité influe également sur la tension de la membrane plasmique, elle-même régulée par le trafic membranaire. Comment la rigidité et la composition du substrat peuvent réguler l'exocytose, qui à son tour régule la tension de la membrane, reste largement inconnu. Ici, j'ai utilisé l’imagerie pHluorin d’évènements uniques d’exocytose de cellules cultivées sur des substrats de rigidité et de composition contrôlée pour explorer la régulation de VAM
APA, Harvard, Vancouver, ISO, and other styles
5

Manifacier, Ian. "Understanding adherent cell mechanics and the influence of substrate rigidity." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4106/document.

Full text
Abstract:
L’ingénierie tissulaire est une stratégie médicale qui repose sur la régénération de tissu par les cellules avec ou sans matériaux. Pour maîtriser cette synthèse, il faut comprendre la cellule comme une part intégrante du tissu. Hormis ses interactions biochimiques avec son support, la cellule interagit également mécaniquement avec son environnement. Elle s’accroche à ce dernier et évalue sa dureté pour adapter sa réponse biologique. Dans cette étude, j’ai développé des modèles numériques pour analyser l’influence de la rigidité du substrat sur le comportement mécanique de la cellule, sur sa s
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Bin. "Réalisation et étude de substrates de rigidité modulable et de dispositifs intégrables pour l'ingénierie cellulaire et tissulaire." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE043/document.

Full text
Abstract:
L’objectif de ce travail de thèse est de réaliser des substrats et des dispositifs de culture cellulaire pour des applications à grande échelle. En utilisant à la fois des techniques de lithographie conventionnelles et non conventionnelles, nous avons d'abord fabriqué des matrices denses de piliers élastomère avec un gradient de hauteur pour les études de migration cellulaire et nous avons observé un allongement cellulaire remarquable et une migration cellulaire dirigée, tout dépendant du gradient de rigidité. Les micropiliers élastomères pourraient également être organisés en gradient de haut
APA, Harvard, Vancouver, ISO, and other styles
7

Frey, Margo Tilley. "Development of a Substrate with Photo-Modulatable Rigidity for Probing Spatial and Temporal Responses of Cells to Mechanical Signals: A Dissertation." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-dissertations/337.

Full text
Abstract:
"Topographical and mechanical properties of adhesive substrates provide important biological cues that affect cell spreading, migration, growth, and differentiation. The phenomenon has led to the increased use of topographically patterned and flexible substrates in studying cultured cells. However, these studies may be complicated by various limitations. For example, the effects of ligand distribution and porosity are affected by topographical features of 3D biological constructs. Similarly, many studies of mechanical cues are compounded with cellular deformation from external forces, or li
APA, Harvard, Vancouver, ISO, and other styles
8

Hovhannisyan, Yeranuhi. "Modélisation cardiaque des myopathies myofibrillaires à l'aide de cellules souches pluripotentes induites pour explorer la pathogenèse cardiaque Polyacrylamide Hydrogels with Rigidity-Independent Surface Chemistry Show Limited Long-Term Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells on Soft Substrates Modéliser la myopathie myofibrillaire pour élucider la pathogenèse cardiaque Synemin-related skeletal and cardiac myopathies: an overview of pathogenic variants Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse Effects of the selective inhibition of proteasome caspase-like activity by CLi a derivative of nor-cerpegin in dystrophic mdx mice." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS095.

Full text
Abstract:
La myopathie myofibrillaire est une maladie neuromusculaire à évolution lente caractérisée par de graves troubles musculaires causés par des mutations dans le gène codant pour des protéines du cytosquelette. L'un des gènes affectés en relation avec le développement de la MFM est DES. Des mutations dans le gène de la desmine entraînent des myopathies des muscles squelettiques et cardiaques. Cependant, les évènements qu'elles entraînent et qui sont à l’origine des phénotypes pathologiques cardiaques restent mal connus. Mon objectif est de créer un modèle in vitro de MFM basé sur des cellules sou
APA, Harvard, Vancouver, ISO, and other styles
9

Boudreau-Béland, Jonathan. "Effets de divers stimuli sur les caractéristiques des cardiomyocytes en culture dans le but de définir les conditions optimisées pour la fabrication de tissu cardiaque de remplacement." Thèse, 2015. http://hdl.handle.net/1866/18365.

Full text
Abstract:
Encore en 2015, un grand nombre d’individus décèdent de pathologies du rythme cardiaque non contrôlées ou d’un manque de disponibilité de donneurs d’organes compatibles. Le génie tissulaire en créant, réparant ou améliorant la fonction des tissus est une option prometteuse afin de diminuer la mortalité associée à ces pathologies. L’objectif global de mon projet de recherche était de développer des outils et d’étudier l’impact fonctionnel des différents stimuli (mécanique et électrique) de l’environnement cardiaque dans le but de définir des conditions optimisées de culture pour la fabrication
APA, Harvard, Vancouver, ISO, and other styles
10

"Harnessing cell response to substrate rigidity for tissue engineering applications using novel substrates with patterned elasticity." Thesis, 2010. http://hdl.handle.net/1911/62067.

Full text
Abstract:
Cell response to substrate rigidity is an emerging field with implications in processes ranging from embryological development to the pathogenesis of disease states such as cancer or fibrosis, in which changes in tissue mechanical properties may inform cellular behavior. It may also serve as a valuable tool in tissue engineering, where materials must be chosen to best influence desired cell phenotype. This thesis describes novel substrates with patterned mechanical properties and their effects on mesenchymal stem cell (MSC) and macrophage behavior. Though substrate rigidity has previously been
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Rigidité du substrat"

1

Leo, Sarah Elizabeth De. Human T cell response to substrate rigidity for design of improved expansion platform. [publisher not identified], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hu, Mufeng. Biomaterial-based Cell Culture Platform for Podocyte Phenotype Study with Shape and Substrate Rigidity Control. [publisher not identified], 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chander, Ashok Coil. Integrin-Linked Kinase, ECM Composition, and Substrate Rigidity Regulate Focal Adhesion - Actin Coupling, Modulating Survival, Proliferation and Migration: Towards a Biophysical Cancer Biomarker. [publisher not identified], 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rigidité du substrat"

1

Sarvestani, Alireza S. "Effect of Substrate Rigidity on the Growth of Nascent Adhesion Sites." In Advances in Cell Mechanics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17590-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Stephanie, Wei-hui Guo, Ian Hoffecker, and Yu-li Wang. "Preparation of a Micropatterned Rigid-Soft Composite Substrate for Probing Cellular Rigidity Sensing." In Methods in Cell Biology. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-800281-0.00001-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tobeña, Adolf. "Distinguishing Partisan and Extremist Brains?: Research Paths Toward Neural Signatures of Violent Radicalism." In Global War on Terrorism - Revisited [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003276.

Full text
Abstract:
Neuroimaging of political ideologies (left-wing vs. right-wing; conservatism vs. liberalism), unveiled brain systems for mediating the cognitive and affective inclinations of partisanship. Brain networks related to deliberation and cognitive control, as well as those processing subjective values and social norms, were mainly involved. Correlational links from normative people were corroborated by brain lesions and focal transcranial stimulation techniques. Neuroimaging studies with extremists ready to endorse violent actions are scarce and do not provide fully concordant maps with those coming from people with strong partisanship allegiances. The present review discusses the advances made in the description of the neural systems that mediate both ordinary partisanship (the “partisan brain”), and radicalized extremism prone to violence (the “extremist brain”), signaling concomitances and differences. Further advances might come from unveiling distinctive interactions between prefrontal cortex areas with other cortical and subcortical regions that may help to outline dedicated maps and modes of operation. Moreover, measuring the hardness of beliefs and the strength of value adscriptions together with cognitive flexibility/rigidity, aggressiveness, ambition, high-risk seeking and other individual traits rooted in psychobiological substrates appear indispensable to distinguish between partisanship alignments and violent extremism proneness.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rigidité du substrat"

1

McGarry, Patrick, Robert M. McMeeking, Anthony G. Evans, and Vikram S. Deshpande. "Modeling the Active Response of Cells to Mechanical Stimulation." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193071.

Full text
Abstract:
The mechanical properties of a cells surrounding environment, or extra cellular matrix (ECM), play a crucial role in cellular behavior. For example, it has been shown that cells tend to spread more on rigid substrates [1, 2] and that motile cells move from regions of low substrate rigidity to regions of high substrate rigidity [3].
APA, Harvard, Vancouver, ISO, and other styles
2

Tondon, Abhishek, and Roland Kaunas. "The Direction of Cyclic Stretch-Induced Cell and Stress Fiber Alignment Depends on Matrix Rigidity." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14794.

Full text
Abstract:
We have previously reported that stress fibers (SFs) in cells with normal contractility reorient perpendicular to the direction of cyclic stretch [1], while cells treated with inhibitors of myosin light-chain kinase (MLCK) or members of the Rho GTPase pathway oriented parallel to the direction of stretch [1, 2]. Our theoretical modeling predicts that myosin II acts as a tension sensor acting to maintain SF tension through sliding along actin filaments under low strain rates or promoting SF reorientation under high strain rates [3]. This model predicts that SFs on stiff elastic substrates are a
APA, Harvard, Vancouver, ISO, and other styles
3

Chang, Wei-Jen, Nadeen Chahine, and Pen-Hsiu Grace Chao. "Effects of Composite Substrate Microstructure on Fibroblast Morphology and Migration." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53859.

Full text
Abstract:
Many studies have focused on the effects of substrate rigidity on cell traction, migration, and differentiation [1–3]. Most cells are known to migrate toward the stiffer substrate, a phenomenon known as durotaxis. Recent reports have also demonstrated the ‘depth-sensing’ ability of cells on soft hydrogels where cell behaviors on thin gels are more similar to those on stiffer substrates [4–5]. Taking advantage of the high fidelity of microfabrication and soft lithography products, we created novel composite substrates composed of a top layer of collagen hydrogel and an underlying microstructure
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Hang, Naoto Isozaki, Kazuki Ukita, Taviare L. Hawkins, Jennifer L. Ross, and Ryuji Yokokawa. "Flexural Rigidity of Microtubules Measured by Gold Stripe-Patterned Substrate." In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bao, Yuanye, Zhaobin Guo, and Ting-Hsuan Chen. "Left-right asymmetry in cell orientation requires high substrate rigidity." In 2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2015. http://dx.doi.org/10.1109/nanomed.2015.7492496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fu, Jianping. "Mechanical Regulation of Stem Cell Differentiation on Geometrically Modulated Elastomeric Substrates." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13199.

Full text
Abstract:
We report the use of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrate that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility, and stem cell differentiation. Furthermore, these micropost arrays reveal that changes in cytoskeletal contractility can precede stem cell differentiation and be utilized as a non-destructive predictor for fate decisions at the single cell level.
APA, Harvard, Vancouver, ISO, and other styles
7

Su, Fong-Chin, Fang-Yu Shao, Chia-Ching Wu, Ming-Long Yeh, and Ming-Jer Tang. "Involvement of focal adhesion kinase in cell adhesion force on different substrate rigidity." In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, W. C., P. C. Hsieh, G. M. Wang, and M. L. Yeh. "The influence of surface morphology and rigidity of the substrata on cell motility." In 2009 IEEE 35th Annual Northeast Bioengineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/nebc.2009.4967790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Molladavoodi, Sara, John B. Medley, Maud Gorbet, and H. J. Kwon. "Mechanotransduction in Corneal Epithelial Cells." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65406.

Full text
Abstract:
Mechanical properties of the cornea can be affected by diseases such as keratoconus. In keratoconus, a decrease in both thickness and rigidity of the cornea is observed. It is currently not clear whether and how changes in mechanical properties of the cornea are associated with corneal epithelial cell behavior. In the present study, polyacrylamide (PAA) gels with different elastic moduli have been prepared and human corneal epithelial cells (HCECs) have been cultured on them. To investigate the effect that changes in elastic modulus may have on adhesion and migration of corneal epithelial cell
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Jianping. "Micro-Engineered Sythetical Extrocellular Metrix for Stem Cell Differentiation Study." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19312.

Full text
Abstract:
We report the use of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrate that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility, and stem cell differentiation. Furthermore, these micropost arrays reveal that changes in cytoskeletal contractility can precede stem cell differentiation and be utilized as a non-destructive predictor for fate decisions at the single cell level.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!