Academic literature on the topic 'Riman geometriyasi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Riman geometriyasi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Riman geometriyasi"

1

Jo'rayev, Shukurjon Yusufjonovich, Maxbuba Axmedovna Ummatova, and Kamolaxon Mumtozbekovna Ahliddinova. "RIMAN GEOMETRIYASI VA UNING TARIXI HAQIDA." JOURNAL OF SCIENCE-INNOVATIVE RESEARCH IN UZBEKISTAN 2, no. 1 (2024): 521–29. https://doi.org/10.5281/zenodo.10573206.

Full text
Abstract:
Maqolada zamonaviy matematika uning rivojlanish tarixi, matematikaning turli sohalarida taraqqiyoti, ilm-fanning universal tilini hal qilishning kuchli vositasi ekanligi, XIX asr oxiri va XX asr boshlarida turli geometriyalar, cheksiz oʻlchovli fazolar va ularning tarixi, o‘qitilishi haqida ma’lumotlar berilgan.
APA, Harvard, Vancouver, ISO, and other styles
2

Abdurahimova, Dildoraxon Erkinjon qizi, and Sh. Jo'rayev. "SFERIK GEOMETRIYA VA RIMANNING ELLIPTIK GEOMETRIYALARI HAQIDA TUSHUNCHA." TECHNICAL SCIENCE RESEARCH IN UZBEKISTAN 2, no. 1 (2024): 145–48. https://doi.org/10.5281/zenodo.10539217.

Full text
Abstract:
Ushbu ilmiy maqola sferik geometriya va Riman elliptik geometriyalarini chuqur o'rganishga qaratilgan. Evklid bo'lmagan geometriyaning bir bo'limi bo'lgan sferik geometriya shar yuzasida o'ziga xos xususiyatlari bilan ajralib turadi. Rieman elliptik geometriyalari fizika, astronomiya va informatika kabi turli sohalarda qo'llanilishi bilan geometrik bo'shliqlarga elliptik funktsiyalarni tushunishni kengaytiradi. Maqola ushbu geometriyalarning asosiy tushunchalari, xossalari va qo'llanilishini yoritishga qaratilgan bo'lib, ularning nazariy asoslari va amaliy ta'siriga to'liq kirishni taklif qila
APA, Harvard, Vancouver, ISO, and other styles
3

Sherqo'ziyev, Mamadiyar, Akmal Sotvoldiyev, and Bekzod Avazov. "KOINOT GEOMETRIYASI VA KOSMOLOGIYA." Innovations in Science and Technologies 2, no. 5 (2025): 115–21. https://doi.org/10.5281/zenodo.15437971.

Full text
Abstract:
Mazkur maqolada Evklid geometriyasining muhim postulatlaridan biri bo‘lgan V postulatning tarixiy muammosi, uni isbotlashga qaratilgan urinishlar hamda noevklid geometriyalar – xususan, Lobachevskiy va Riman geometriyalarining shakllanishi haqida so‘z boradi. Lobachevskiy tomonidan ilgari surilgan yangi aksioma asosida yaratilgan geometriya koinotni yangi nuqtai-nazardan tahlil qilish imkonini berdi. Shuningdek, ushbu nazariyalar zamonaviy kosmologiya fanining rivojlanishiga ham asos bo‘lgan. Maqolada keltirilgan ilmiy g‘oyalar geometriya, fizika, astronomiya va f
APA, Harvard, Vancouver, ISO, and other styles
4

Ergasheva Zilola, Abdivali Shamshiyev. "GEOMETRIYA VA AKSIOMATIK METODLAR." INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY 2, no. 2 (2025): 41–42. https://doi.org/10.70728/zhm66r20.

Full text
Abstract:
Ushbu maqolada geometriya fanida aksiomatik metodlarning o‘rni va ahamiyati tahlil qilinadi. Tadqiqot davomida Evklid, Lobachevskiy va Riman geometriyalari asosiy aksiomalari tahlil qilinib, ularning matematik tizimdagi roli o‘rganildi. Natijalar shuni ko‘rsatadiki, aksiomatik metodlar geometriya sohasida muhim nazariy asos yaratib, matematik isbotlarni qat’iy shaklda ifodalash imkonini beradi.
APA, Harvard, Vancouver, ISO, and other styles
5

Do'stova, S.H., and Mohiniso Shodiyeva. "TEKISLIKDA INTEGRALLANUVCHI VEKTOR MAYDONLAR SISTEMASI." January 1, 2024. https://doi.org/10.5281/zenodo.10448390.

Full text
Abstract:
<em>Zamonaviy Riman geometriyasida tatqiqotning asosiy obyektlari global koordinatalar sistemasiga ega bo'lmagan silliq ko'pxilliklardir. Bunda vektor maydon tushunchasi asosiy rol o'ynaydi. Nyutondan keyin tabiatshunoslik va xususan fizika rivojlanib borgan sari hodisalarni matematik tavsiflash vositasi sifatida vektor maydonlardan tobora ko'proq foydalanilmoqda. </em>
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!