Academic literature on the topic 'Rissanalyse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rissanalyse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Rissanalyse"
Wünsche, Michael, Chuanzeng Zhang, and Meinhard Kuna. "Dynamische Rissanalyse in geschichteten anisotropen Verbundwerkstoffen mit einer Zeitbereichs-Randelementmethode." Materials Testing 51, no. 3 (March 2009): 116–25. http://dx.doi.org/10.3139/120.110021.
Full textWünsche, Michael, Stefanie Beyer, Chuanzeng Zhang, and Meinhard Kuna. "2D-dynamische Rissanalyse in anisotropen Werkstoffen mit einer hypersingulären Zeitbereichs-Randelementmethode." Materials Testing 49, no. 10 (October 2007): 534–41. http://dx.doi.org/10.3139/120.100844.
Full textDissertations / Theses on the topic "Rissanalyse"
Hampel, Uwe. "Photogrammetrische Erfassung der Verformungs- und Rissentwicklung bei baumechanischen Untersuchungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1213691909563-21395.
Full textMethods of digital close range photogrammetry are a useful tool for the measurement of three-dimensional objects in civil engineering material testing. They are generally suitable for automatic measurements with chronological synchronism of object-surfaces during short and long time load tests in laboratories and in situ. The methods provide an opportunity for measuring deformations, cracks and damages at the object-surfaces during load tests in civil engineering material testing. These possibilities can present new results for a lot of applications in civil engineering material testing. Displacement and deformation measurements still rely on wire strain gauges or inductive displacement transducers. However, they are not suitable for a large number of measurement points or the detection of cracks during load tests. First of all, a number of systematic investigations was conducted. This was necessary to identify capable methods of the digital photogrammetry for the measuring of deformations, cracks and damages at object-surfaces during load tests in civil engineering material testing. These investigations laid the foundation for practical measurements during short and long time load tests of samples and constructions from different parts of the civil engineering (e.g. timber construction, solid structure, stell and road construction). The application-oriented research in civil engineering material testing demonstrates the wide range of demands on systems and methods of digital close range photogrammetry have to meet. Often the methods and systems of digital close range photogrammetry had to be modified or developed. In this context the systematic analysis of relevant determining factors was started.The results demonstrate that the methods and systems of digital close range photogrammetry are a suitable and flexible tool for the measurement of deformations, cracks and damages at the object-surfaces in civil engineering material testing. In addition, the special experiments in civil engineering material testing demonstrate the high requirements laid upon methods and systems of the digital closed range photogrammetry, for instance regarding with the measurement resolution/range and robustness processes. This was the motivation to optimize and to develop methods and systems for the special measurement tasks in civil engineering material testing, for instance a 2.5D measurement technique based on the Dynamic Projective Transformation (DPT) or the use of mirrors. Also a special measurement target was developed. This type of measurement target modifies intensities and is ideal for high deformation measurements (1/100 pixel). The large number of points in conjunction with area-based measurements require time-optimized methods for the analysis process. The modified and developed methods/programs enable fast analysis-processes, e.g. in conjunction with point-matching process 60.000 points per second.The developed crack-detection-methods allow area- and profile-based to analyze the load-dependent position and width of cracks, e.g. cracks > 3 µm (100 mm x 100 mm). A main target of this work was to compile all relevant determining factors regarding the application of the digital close range photogrammetry during load tests in civil engineering material testing. To a large extent, this target was reached. However, the compilation of all relevant determining factors requires a special experimental set-up. This experimental set-up was developed. In the future, it may enable the automatic research of all significant determining factors. The results can be used to qualify or optimize the established methods and processes. Also it's possible that the results generates new measurement processes
Hampel, Uwe. "Photogrammetrische Erfassung der Verformungs- und Rissentwicklung bei baumechanischen Untersuchungen." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23829.
Full textMethods of digital close range photogrammetry are a useful tool for the measurement of three-dimensional objects in civil engineering material testing. They are generally suitable for automatic measurements with chronological synchronism of object-surfaces during short and long time load tests in laboratories and in situ. The methods provide an opportunity for measuring deformations, cracks and damages at the object-surfaces during load tests in civil engineering material testing. These possibilities can present new results for a lot of applications in civil engineering material testing. Displacement and deformation measurements still rely on wire strain gauges or inductive displacement transducers. However, they are not suitable for a large number of measurement points or the detection of cracks during load tests. First of all, a number of systematic investigations was conducted. This was necessary to identify capable methods of the digital photogrammetry for the measuring of deformations, cracks and damages at object-surfaces during load tests in civil engineering material testing. These investigations laid the foundation for practical measurements during short and long time load tests of samples and constructions from different parts of the civil engineering (e.g. timber construction, solid structure, stell and road construction). The application-oriented research in civil engineering material testing demonstrates the wide range of demands on systems and methods of digital close range photogrammetry have to meet. Often the methods and systems of digital close range photogrammetry had to be modified or developed. In this context the systematic analysis of relevant determining factors was started.The results demonstrate that the methods and systems of digital close range photogrammetry are a suitable and flexible tool for the measurement of deformations, cracks and damages at the object-surfaces in civil engineering material testing. In addition, the special experiments in civil engineering material testing demonstrate the high requirements laid upon methods and systems of the digital closed range photogrammetry, for instance regarding with the measurement resolution/range and robustness processes. This was the motivation to optimize and to develop methods and systems for the special measurement tasks in civil engineering material testing, for instance a 2.5D measurement technique based on the Dynamic Projective Transformation (DPT) or the use of mirrors. Also a special measurement target was developed. This type of measurement target modifies intensities and is ideal for high deformation measurements (1/100 pixel). The large number of points in conjunction with area-based measurements require time-optimized methods for the analysis process. The modified and developed methods/programs enable fast analysis-processes, e.g. in conjunction with point-matching process 60.000 points per second.The developed crack-detection-methods allow area- and profile-based to analyze the load-dependent position and width of cracks, e.g. cracks > 3 µm (100 mm x 100 mm). A main target of this work was to compile all relevant determining factors regarding the application of the digital close range photogrammetry during load tests in civil engineering material testing. To a large extent, this target was reached. However, the compilation of all relevant determining factors requires a special experimental set-up. This experimental set-up was developed. In the future, it may enable the automatic research of all significant determining factors. The results can be used to qualify or optimize the established methods and processes. Also it's possible that the results generates new measurement processes.
Book chapters on the topic "Rissanalyse"
Kuna, Meinhard. "FEM-Techniken zur Rissanalyse in linear-elastischen Strukturen." In Numerische Beanspruchungsanalyse von Rissen, 187–252. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9810-4_5.
Full textKuna, Meinhard. "FEM-Techniken zur Rissanalyse in elastisch-plastischen Strukturen." In Numerische Beanspruchungsanalyse von Rissen, 291–310. Wiesbaden: Vieweg+Teubner, 2010. http://dx.doi.org/10.1007/978-3-8348-9810-4_7.
Full text"FEM-Techniken zur Rissanalyse in linear-elastischen Strukturen." In Numerische Beanspruchungsanalyse von Rissen, 187–252. Wiesbaden: Vieweg+Teubner, 2008. http://dx.doi.org/10.1007/978-3-8348-9285-0_5.
Full text"FEM-Techniken zur Rissanalyse in elastisch-plastischen Strukturen." In Numerische Beanspruchungsanalyse von Rissen, 291–310. Wiesbaden: Vieweg+Teubner, 2008. http://dx.doi.org/10.1007/978-3-8348-9285-0_7.
Full text